Search Results

You are looking at 1 - 10 of 20 items for

  • Author or Editor: D. R. Cayan x
  • All content x
Clear All Modify Search
Jessica D. Lundquist and Daniel R. Cayan

Abstract

The diurnal cycle in streamflow constitutes a significant part of the variability in many rivers in the western United States and can be used to understand some of the dominant processes affecting the water balance of a given river basin. Rivers in which water is added diurnally, as in snowmelt, and rivers in which water is removed diurnally, as in evapotranspiration and infiltration, exhibit substantial differences in the timing, relative magnitude, and shape of their diurnal flow variations. Snowmelt-dominated rivers achieve their highest sustained flow and largest diurnal fluctuations during the spring melt season. These fluctuations are characterized by sharp rises and gradual declines in discharge each day. In large snowmelt-dominated basins, at the end of the melt season, the hour of maximum discharge shifts to later in the day as the snow line retreats to higher elevations. Many evapotranspiration/infiltration-dominated rivers in the western states achieve their highest sustained flows during the winter rainy season but exhibit their strongest diurnal cycles during summer months, when discharge is low, and the diurnal fluctuations compose a large percentage of the total flow. In contrast to snowmelt-dominated rivers, the maximum discharge in evapotranspiration/infiltration-dominated rivers occurs consistently in the morning throughout the summer. In these rivers, diurnal changes are characterized by a gradual rise and sharp decline each day.

Full access
Michael D. Dettinger and Daniel R. Cayan

Abstract

Since the late 1940s, snowmelt and runoff have come increasingly early in the water year in many basins in northern and central California. This subtle trend is most pronounced in moderate-altitude basins, which are sensitive to changes in mean winter temperatures. Such basins have broad areas in which winter temperatures are near enough to freezing that small increases result initially in the formation of less snow and eventually in early snowmelt. In moderate-altitude basins of California, a declining fraction of the annual runoff has come in April–June. This decline has been compensated by increased fractions of runoff at other, mostly earlier, times in the water year.

Weather stations in central California, including the central Sierra Nevada, have shown trends toward warmer winters since the 1940s. A series of regression analyses indicate that runoff timing responds equally to the observed decadal-scale trends in winter temperature and interannual temperature variations of the same magnitude, suggesting that the temperature trend is sufficient to explain the runoff-timing trends. The immediate cause of the trend toward warmer winters in California is a concurrent, long-term fluctuation in winter atmospheric circulations over the North Pacific Ocean and North America that is not immediately distinguishable from natural atmospheric variability. The fluctuation began to affect California in the 1940s, when the region of strongest low-frequency variation of winter circulations shifted to a part of the central North Pacific Ocean that is teleconnected to California temperatures. Since the late 1940s, winter wind fields have been displaced progressively southward over the central North Pacific and northward over the west coast of North America. These shifts in atmospheric circulations are associated with concurrent shifts in both West Coast air temperatures and North Pacific sea surface temperatures.

Full access
Jessica D. Lundquist, Daniel R. Cayan, and Michael D. Dettinger

Abstract

Short-term climate and weather systems can have a strong influence on mountain snowmelt, sometimes overwhelming the effects of elevation and aspect. Although most years exhibit a spring onset that starts first at lowest and moves to highest elevations, in spring 2002, flow in a variety of streams within the Tuolumne and Merced River basins of the southern Sierra Nevada all rose synchronously on 29 March. Flow in streams draining small high-altitude glacial subcatchments rose at the same time as that draining much larger basins gauged at lower altitudes, and streams from north- and south-facing cirques rose and fell together. Historical analysis demonstrates that 2002 was one among only 8 yr with such synchronous flow onsets during the past 87 yr, recognized by having simultaneous onsets of snowmelt at over 70% of snow pillow sites, having discharge in over 70% of monitored streams increase simultaneously, and having temperatures increase over 12°C within a 5-day period. Synchronous springs tend to begin with a low pressure trough over California during late winter, followed by the onset of a strong ridge and unusually warm temperatures. Synchronous springs are characterized by warmer than average winters and cooler than average March temperatures in California. In the most elevation-dependent, nonsynchronous years, periods of little or no storm activity, with warmer than average March temperatures, precede the onset of spring snowmelt, allowing elevation and aspect to influence snowmelt as spring arrives gradually.

Full access
Noah Knowles, Michael D. Dettinger, and Daniel R. Cayan

Abstract

The water resources of the western United States depend heavily on snowpack to store part of the wintertime precipitation into the drier summer months. A well-documented shift toward earlier runoff in recent decades has been attributed to 1) more precipitation falling as rain instead of snow and 2) earlier snowmelt. The present study addresses the former, documenting a regional trend toward smaller ratios of winter-total snowfall water equivalent (SFE) to winter-total precipitation (P) during the period 1949–2004.

The trends toward reduced SFE are a response to warming across the region, with the most significant reductions occurring where winter wet-day minimum temperatures, averaged over the study period, were warmer than −5°C. Most SFE reductions were associated with winter wet-day temperature increases between 0° and +3°C over the study period. Warmings larger than this occurred mainly at sites where the mean temperatures were cool enough that the precipitation form was less susceptible to warming trends.

The trends toward reduced SFE/P ratios were most pronounced in March regionwide and in January near the West Coast, corresponding to widespread warming in these months. While mean temperatures in March were sufficiently high to allow the warming trend to produce SFE/P declines across the study region, mean January temperatures were cooler, with the result that January SFE/P impacts were restricted to the lower elevations near the West Coast.

Extending the analysis back to 1920 shows that although the trends presented here may be partially attributable to interdecadal climate variability associated with the Pacific decadal oscillation, they also appear to result from still longer-term climate shifts.

Full access
Iris T. Stewart, Daniel R. Cayan, and Michael D. Dettinger

Abstract

The highly variable timing of streamflow in snowmelt-dominated basins across western North America is an important consequence, and indicator, of climate fluctuations. Changes in the timing of snowmelt-derived streamflow from 1948 to 2002 were investigated in a network of 302 western North America gauges by examining the center of mass for flow, spring pulse onset dates, and seasonal fractional flows through trend and principal component analyses. Statistical analysis of the streamflow timing measures with Pacific climate indicators identified local and key large-scale processes that govern the regionally coherent parts of the changes and their relative importance.

Widespread and regionally coherent trends toward earlier onsets of springtime snowmelt and streamflow have taken place across most of western North America, affecting an area that is much larger than previously recognized. These timing changes have resulted in increasing fractions of annual flow occurring earlier in the water year by 1–4 weeks. The immediate (or proximal) forcings for the spatially coherent parts of the year-to-year fluctuations and longer-term trends of streamflow timing have been higher winter and spring temperatures. Although these temperature changes are partly controlled by the decadal-scale Pacific climate mode [Pacific decadal oscillation (PDO)], a separate and significant part of the variance is associated with a springtime warming trend that spans the PDO phases.

Full access
Peter D. Bromirski, Reinhard E. Flick, and Daniel R. Cayan

Abstract

The longest available hourly tide gauge record along the West Coast (U.S.) at San Francisco yields meteorologically forced nontide residuals (NTR), providing an estimate of the variation in “storminess” from 1858 to 2000. Mean monthly positive NTR (associated with low sea level pressure) show no substantial change along the central California coast since 1858 or over the last 50 years. However, in contrast, the highest 2% of extreme winter NTR levels exhibit a significant increasing trend since about 1950. Extreme winter NTR also show pronounced quasi-periodic decadal-scale variability that is relatively consistent over the last 140 years. Atmospheric sea level pressure anomalies (associated with years having high winter NTR) take the form of a distinct, large-scale atmospheric circulation pattern, with intense storminess associated with a broad, southeasterly displaced, deep Aleutian low that directs storm tracks toward the California coast.

Full access
Hugo G. Hidalgo, Daniel R. Cayan, and Michael D. Dettinger

Abstract

The variability (1990–2002) of potential evapotranspiration estimates (ETo) and related meteorological variables from a set of stations from the California Irrigation Management System (CIMIS) is studied. Data from the National Climatic Data Center (NCDC) and from the Department of Energy from 1950 to 2001 were used to validate the results. The objective is to determine the characteristics of climatological ETo and to identify factors controlling its variability (including associated atmospheric circulations). Daily ETo anomalies are strongly correlated with net radiation (R n) anomalies, relative humidity (RH), and cloud cover, and less with average daily temperature (T avg). The highest intraseasonal variability of ETo daily anomalies occurs during the spring, mainly caused by anomalies below the high ETo seasonal values during cloudy days. A characteristic circulation pattern is associated with anomalies of ETo and its driving meteorological inputs, R n, RH, and T avg, at daily to seasonal time scales. This circulation pattern is dominated by 700-hPa geopotential height (Z 700) anomalies over a region off the west coast of North America, approximately between 32° and 44° latitude, referred to as the California Pressure Anomaly (CPA). High cloudiness and lower than normal ETo are associated with the low-height (pressure) phase of the CPA pattern. Higher than normal ETo anomalies are associated with clear skies maintained through anomalously high Z 700 anomalies offshore of the North American coast. Spring CPA, cloudiness, maximum temperature (T max), pan evaporation (E pan), and ETo conditions have not trended significantly or consistently during the second half of the twentieth century in California. Because it is not known how cloud cover and humidity will respond to climate change, the response of ETo in California to increased greenhouse-gas concentrations is essentially unknown; however, to retain the levels of ETo in the current climate, a decline of R n by about 6% would be required to compensate for a warming of +3°C.

Full access
A. L. Westerling, A. Gershunov, T. J. Brown, D. R. Cayan, and M. D. Dettinger

A 21-yr gridded monthly fire-starts and acres-burned dataset from U.S. Forest Service, Bureau of Land Management, National Park Service, and Bureau of Indian Affairs fire reports recreates the seasonality and interannual variability of wild fire in the western United States. Despite pervasive human influence in western fire regimes, it is striking how strongly these data reveal a fire season responding to variations in climate. Correlating anomalous wildfire frequency and extent with the Palmer Drought Severity Index illustrates the importance of prior and accumulated precipitation anomalies for future wildfire season severity. This link to antecedent seasons' moisture conditions varies widely with differences in predominant fuel type. Furthermore, these data demonstrate that the relationship between wildfire season severity and observed moisture anomalies from antecedent seasons is strong enough to forecast fire season severity at lead times of one season to a year in advance.

Full access
Ganesh R. Pandey, Daniel R. Cayan, Michael D. Dettinger, and Konstantine P. Georgakakos

Abstract

A hybrid (physical–statistical) scheme is developed to resolve the finescale distribution of daily precipitation over complex terrain. The scheme generates precipitation by combining information from the upper-air conditions and from sparsely distributed station measurements; thus, it proceeds in two steps. First, an initial estimate of the precipitation is made using a simplified orographic precipitation model. It is a steady-state, multilayer, and two-dimensional model following the concepts of Rhea. The model is driven by the 2.5° × 2.5° gridded National Oceanic and Atmospheric Administration–National Centers for Environmental Prediction upper-air profiles, and its parameters are tuned using the observed precipitation structure of the region. Precipitation is generated assuming a forced lifting of the air parcels as they cross the mountain barrier following a straight trajectory. Second, the precipitation is adjusted using errors between derived precipitation and observations from nearby sites. The study area covers the northern half of California, including coastal mountains, central valley, and the Sierra Nevada. The model is run for a 5-km rendition of terrain for days of January–March over the period of 1988–95. A jackknife analysis demonstrates the validity of the approach. The spatial and temporal distributions of the simulated precipitation field agree well with the observed precipitation. Further, a mapping of model performance indices (correlation coefficients, model bias, root-mean-square error, and threat scores) from an array of stations from the region indicates that the model performs satisfactorily in resolving daily precipitation at 5-km resolution.

Full access
Daniel R. Cayan, Michael D. Dettinger, Henry F. Diaz, and Nicholas E. Graham

Abstract

Decadal (>7- yr period) variations of precipitation over western North America account for 20%–50% of the variance of annual precipitation. Spatially, the decadal variability is broken into several regional [O(1000 km)] components. These decadal variations are contributed by fluctuations in precipitation from seasons of the year that vary from region to region and that are not necessarily concentrated in the wettest season(s) alone. The precipitation variations are linked to various decadal atmospheric circulation and SST anomaly patterns where scales range from regional to global scales and that emphasize tropical or extratropical connections, depending upon which precipitation region is considered. Further, wet or dry decades are associated with changes in frequency of at least a few short-period circulation “modes” such as the Pacific–North American pattern. Precipitation fluctuations over the southwestern United States and the Saskatchewan region of western Canada are associated with extensive shifts of sea level pressure and SST anomalies, suggesting that they are components of low-frequency precipitation variability from global-scale climate processes. Consistent with the global scale of its pressure and SST connection, the Southwest decadal precipitation is aligned with opposing precipitation fluctuations in northern Africa.

Full access