Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Dai Yamazaki x
  • Refine by Access: All Content x
Clear All Modify Search
Augusto C. V. Getirana, Aaron Boone, Dai Yamazaki, Bertrand Decharme, Fabrice Papa, and Nelly Mognard

Abstract

Recent advances in global flow routing schemes have shown the importance of using high-resolution topography for representing floodplain inundation dynamics more reliably. This study presents and evaluates the Hydrological Modeling and Analysis Platform (HyMAP), which is a global flow routing scheme specifically designed to bridge the gap between current state-of-the-art global flow routing schemes by combining their main features and introducing new features to better capture floodplain dynamics. The ultimate goals of HyMAP are to provide the scientific community with a novel scheme suited to the assimilation of satellite altimetry data for global water discharge forecasts and a model that can be potentially coupled with atmospheric models. In this first model evaluation, HyMAP is coupled with the Interactions between Soil–Biosphere–Atmosphere (ISBA) land surface model in order to simulate the surface water dynamics in the Amazon basin. The model is evaluated over the 1986–2006 period against an unprecedented source of information, including in situ and satellite-based datasets of water discharge and level, flow velocity, and floodplain extent. Results show that the model can satisfactorily simulate the large-scale features of the water surface dynamics of the Amazon River basin. Among all stream gauges considered, 23% have Nash–Sutcliffe coefficients (NS) higher than 0.50 and 68% above zero. About 28% of the stations have volume errors lower than 15%. Simulated discharges at Óbidos had NS = 0.89. Time series of simulated floodplains at the basin scale agrees well with satellite-based estimates, with a relative error of 7% and correlation of 0.89. These results indicate nonnegligible improvements in comparison to previous studies for the same region.

Full access
Yuan Yang, Ming Pan, Peirong Lin, Hylke E. Beck, Zhenzhong Zeng, Dai Yamazaki, Cédric H. David, Hui Lu, Kun Yang, Yang Hong, and Eric F. Wood

Abstract

Better understanding and quantification of river floods for very local and flashy events calls for modeling capability at fine spatial and temporal scales. However, long-term discharge records with a global coverage suitable for extreme events analysis are still lacking. Here, grounded on recent breakthroughs in global runoff hydrology, river modeling, high resolution hydrography, and climate reanalysis, we developed a 3-hourly river discharge record globally for 2.94 million river reaches during the 40-year period of 1980-2019. The underlying modeling chain consists of the VIC land surface model (0.05°, 3-hourly) that is well calibrated and bias corrected and the RAPID routing model (2.94 million river and catchment vectors), with precipitation input from MSWEP and other meteorological fields downscaled from ERA5. Flood events (above 2-year return) and their characteristics (number, spatial distribution, and seasonality) were extracted and studied. Validations against 3-hourly flow records from 6,000+ gauges in CONUS and daily records from 14,000+ gauges globally show good modeling performance across all flow ranges, good skills in reconstructing flood events (high extremes), and the benefit of (and need for) sub-daily modeling. This data record, referred as Global Reach-level Flood Reanalysis (GRFR), is publicly available at https://www.reachhydro.org/home/records/grfr.

Full access
Yuan Yang, Ming Pan, Peirong Lin, Hylke E. Beck, Zhenzhong Zeng, Dai Yamazaki, Cédric H. David, Hui Lu, Kun Yang, Yang Hong, and Eric F. Wood

Abstract

Better understanding and quantification of river floods for very local and “flashy” events calls for modeling capability at fine spatial and temporal scales. However, long-term discharge records with a global coverage suitable for extreme events analysis are still lacking. Here, grounded on recent breakthroughs in global runoff hydrology, river modeling, high-resolution hydrography, and climate reanalysis, we developed a 3-hourly river discharge record globally for 2.94 million river reaches during the 40-yr period of 1980–2019. The underlying modeling chain consists of the VIC land surface model (0.05°, 3-hourly) that is well calibrated and bias corrected and the RAPID routing model (2.94 million river and catchment vectors), with precipitation input from MSWEP and other meteorological fields downscaled from ERA5. Flood events (above 2-yr return) and their characteristics (number, spatial distribution, and seasonality) were extracted and studied. Validations against 3-hourly flow records from 6,000+ gauges in CONUS and daily records from 14,000+ gauges globally show good modeling performance across all flow ranges, good skills in reconstructing flood events (high extremes), and the benefit of (and need for) subdaily modeling. This data record, referred as Global Reach-Level Flood Reanalysis (GRFR), is publicly available at https://www.reachhydro.org/home/records/grfr.

Full access
Masahiro Watanabe, Tatsuo Suzuki, Ryouta O’ishi, Yoshiki Komuro, Shingo Watanabe, Seita Emori, Toshihiko Takemura, Minoru Chikira, Tomoo Ogura, Miho Sekiguchi, Kumiko Takata, Dai Yamazaki, Tokuta Yokohata, Toru Nozawa, Hiroyasu Hasumi, Hiroaki Tatebe, and Masahide Kimoto

Abstract

A new version of the atmosphere–ocean general circulation model cooperatively produced by the Japanese research community, known as the Model for Interdisciplinary Research on Climate (MIROC), has recently been developed. A century-long control experiment was performed using the new version (MIROC5) with the standard resolution of the T85 atmosphere and 1° ocean models. The climatological mean state and variability are then compared with observations and those in a previous version (MIROC3.2) with two different resolutions (medres, hires), coarser and finer than the resolution of MIROC5.

A few aspects of the mean fields in MIROC5 are similar to or slightly worse than MIROC3.2, but otherwise the climatological features are considerably better. In particular, improvements are found in precipitation, zonal mean atmospheric fields, equatorial ocean subsurface fields, and the simulation of El Niño–Southern Oscillation. The difference between MIROC5 and the previous model is larger than that between the two MIROC3.2 versions, indicating a greater effect of updating parameterization schemes on the model climate than increasing the model resolution. The mean cloud property obtained from the sophisticated prognostic schemes in MIROC5 shows good agreement with satellite measurements. MIROC5 reveals an equilibrium climate sensitivity of 2.6 K, which is lower than that in MIROC3.2 by 1 K. This is probably due to the negative feedback of low clouds to the increasing concentration of CO2, which is opposite to that in MIROC3.2.

Full access