Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Dan Braithwaite x
  • All content x
Clear All Modify Search
Soroosh Sorooshian, Kuo-Lin Hsu, Xiaogang Gao, Hoshin V. Gupta, Bisher Imam, and Dan Braithwaite

PERSIANN, an automated system for Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks, has been developed for the estimation of rainfall from geosynchronous satellite longwave infared imagery (GOES-IR) at a resolution of 0.25° × 0.25° every half-hour. The accuracy of the rainfall product is improved by adaptively adjusting the network parameters using the instantaneous rain-rate estimates from the Tropical Rainfall Measurement Mission (TRMM) microwave imager (TMI product 2A12), and the random errors are further reduced by accumulation to a resolution of 1° × 1° daily. The authors' current GOES-IR-TRMM TMI based product, named PERSIANN-GT, was evaluated over the region 30°S–30°N, 90°E–30°W, which includes the tropical Pacific Ocean and parts of Asia, Australia, and the Americas. The resulting rain-rate estimates agree well with the National Climatic Data Center radar-gauge composite data over Florida and Texas (correlation coefficient p > 0.7). The product also compares well (p ~ 0.77–0.90) with the monthly World Meteorological Organization gauge measurements for 5° × 5° grid locations having high gauge densities. The PERSIANN-GT product was evaluated further by comparing it with current TRMM products (3A11, 3B31, 3B42, 3B43) over the entire study region. The estimates compare well with the TRMM 3B43 1° × 5 1° monthly product, but the PERSIANN-GT products indicate higher rainfall over the western Pacific Ocean when compared to the adjusted geosynchronous precipitation index–based TRMM 3B42 product.

Full access
Phu Nguyen, Andrea Thorstensen, Soroosh Sorooshian, Kuolin Hsu, Amir Aghakouchak, Hamed Ashouri, Hoang Tran, and Dan Braithwaite

Abstract

Little dispute surrounds the observed global temperature changes over the past decades. As a result, there is widespread agreement that a corresponding response in the global hydrologic cycle must exist. However, exactly how such a response manifests remains unsettled. Here we use a unique recently developed long-term satellite-based record to assess changes in precipitation across spatial scales. We show that warm climate regions exhibit decreasing precipitation trends, while arid and polar climate regions show increasing trends. At the country scale, precipitation seems to have increased in 96 countries, and decreased in 104. We also explore precipitation changes over 237 global major basins. Our results show opposing trends at different scales, highlighting the importance of spatial scale in trend analysis. Furthermore, while the increasing global temperature trend is apparent in observations, the same cannot be said for the global precipitation trend according to the high-resolution dataset, PERSIANN-CDR, used in this study.

Open access
Mojtaba Sadeghi, Ata Akbari Asanjan, Mohammad Faridzad, Phu Nguyen, Kuolin Hsu, Soroosh Sorooshian, and Dan Braithwaite

Abstract

Accurate and timely precipitation estimates are critical for monitoring and forecasting natural disasters such as floods. Despite having high-resolution satellite information, precipitation estimation from remotely sensed data still suffers from methodological limitations. State-of-the-art deep learning algorithms, renowned for their skill in learning accurate patterns within large and complex datasets, appear well suited to the task of precipitation estimation, given the ample amount of high-resolution satellite data. In this study, the effectiveness of applying convolutional neural networks (CNNs) together with the infrared (IR) and water vapor (WV) channels from geostationary satellites for estimating precipitation rate is explored. The proposed model performances are evaluated during summer 2012 and 2013 over central CONUS at the spatial resolution of 0.08° and at an hourly time scale. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)–Cloud Classification System (CCS), which is an operational satellite-based product, and PERSIANN–Stacked Denoising Autoencoder (PERSIANN-SDAE) are employed as baseline models. Results demonstrate that the proposed model (PERSIANN-CNN) provides more accurate rainfall estimates compared to the baseline models at various temporal and spatial scales. Specifically, PERSIANN-CNN outperforms PERSIANN-CCS (and PERSIANN-SDAE) by 54% (and 23%) in the critical success index (CSI), demonstrating the detection skills of the model. Furthermore, the root-mean-square error (RMSE) of the rainfall estimates with respect to the National Centers for Environmental Prediction (NCEP) Stage IV gauge–radar data, for PERSIANN-CNN was lower than that of PERSIANN-CCS (PERSIANN-SDAE) by 37% (14%), showing the estimation accuracy of the proposed model.

Full access
Hamed Ashouri, Phu Nguyen, Andrea Thorstensen, Kuo-lin Hsu, Soroosh Sorooshian, and Dan Braithwaite

Abstract

This study aims to investigate the performance of Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR) in a rainfall–runoff modeling application over the past three decades. PERSIANN-CDR provides precipitation data at daily and 0.25° temporal and spatial resolutions from 1983 to present for the 60°S–60°N latitude band and 0°–360° longitude. The study is conducted in two phases over three test basins from the Distributed Hydrologic Model Intercomparison Project, phase 2 (DMIP2). In phase 1, a more recent period of time (2003–10) when other high-resolution satellite-based precipitation products are available is chosen. Precipitation evaluation analysis, conducted against stage IV gauge-adjusted radar data, shows that PERSIANN-CDR and TRMM Multisatellite Precipitation Analysis (TMPA) have close performances with a higher correlation coefficient for TMPA (~0.8 vs 0.75 for PERSIANN-CDR) and almost the same root-mean-square deviation (~6) for both products. TMPA and PERSIANN-CDR outperform PERSIANN, mainly because, unlike PERSIANN, TMPA and PERSIANN-CDR are gauge-adjusted precipitation products. The National Weather Service Office of Hydrologic Development Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) is then forced with PERSIANN, PERSIANN-CDR, TMPA, and stage IV data. Quantitative analysis using five different statistical and model efficiency measures against USGS streamflow observation show that in general in all three DMIP2 basins, the simulated hydrographs forced with PERSIANN-CDR and TMPA have close agreement. Given the promising results in the first phase, the simulation process is extended back to 1983 where only PERSIANN-CDR rainfall estimates are available. The results show that PERSIANN-CDR-derived streamflow simulations are comparable to USGS observations with correlation coefficients of ~0.67–0.73, relatively low biases (~5%–12%), and high index of agreement criterion (~0.68–0.83) between PERSIANN-CDR-simulated daily streamflow and USGS daily observations. The results prove the capability of PERSIANN-CDR in hydrological rainfall–runoff modeling application, especially for long-term streamflow simulations over the past three decades.

Full access
Phu Nguyen, Soroosh Sorooshian, Andrea Thorstensen, Hoang Tran, Phat Huynh, Thanh Pham, Hamed Ashouri, Kuolin Hsu, Amir AghaKouchak, and Dan Braithwaite
Full access
Hamed Ashouri, Kuo-Lin Hsu, Soroosh Sorooshian, Dan K. Braithwaite, Kenneth R. Knapp, L. Dewayne Cecil, Brian R. Nelson, and Olivier P. Prat

Abstract

A new retrospective satellite-based precipitation dataset is constructed as a climate data record for hydrological and climate studies. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR) provides daily and 0.25° rainfall estimates for the latitude band 60°S–60°N for the period of 1 January 1983 to 31 December 2012 (delayed present). PERSIANN-CDR is aimed at addressing the need for a consistent, long-term, high-resolution, and global precipitation dataset for studying the changes and trends in daily precipitation, especially extreme precipitation events, due to climate change and natural variability. PERSIANN-CDR is generated from the PERSIANN algorithm using GridSat-B1 infrared data. It is adjusted using the Global Precipitation Climatology Project (GPCP) monthly product to maintain consistency of the two datasets at 2.5° monthly scale throughout the entire record. Three case studies for testing the efficacy of the dataset against available observations and satellite products are reported. The verification study over Hurricane Katrina (2005) shows that PERSIANN-CDR has good agreement with the stage IV radar data, noting that PERSIANN-CDR has more complete spatial coverage than the radar data. In addition, the comparison of PERSIANN-CDR against gauge observations during the 1986 Sydney flood in Australia reaffirms the capability of PERSIANN-CDR to provide reasonably accurate rainfall estimates. Moreover, the probability density function (PDF) of PERSIANN-CDR over the contiguous United States exhibits good agreement with the PDFs of the Climate Prediction Center (CPC) gridded gauge data and the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) product. The results indicate high potential for using PERSIANN-CDR for long-term hydroclimate studies in regional and global scales.

Full access