Search Results

You are looking at 1 - 10 of 31 items for

  • Author or Editor: Daniel R. Chavas x
  • Refine by Access: All Content x
Clear All Modify Search
Daniel R. Chavas

Abstract

In a recent study, a theory was presented for the dependence of tropical cyclone intensity on the ventilation of dry air by environmental vertical wind shear. This theory was found to successfully capture the statistics of intensity dynamics in the historical record. This theory is rederived here from a simple three-term power budget and extended to analytical solutions for the complete phase space, including the change in storm intensity itself. The derivation is then generalized to the case of a capped surface entropy flux wind speed, including analytical solutions defined relative to both the traditional potential intensity and the capped-flux potential intensity. The results demonstrate that a cap on the surface entropy flux wind speed reduces the potential intensity of the system and effectively amplifies the detrimental effect of ventilation on the tropical cyclone heat engine. However, such a cap does not alter the qualitative structure of the phase-space solution for intensity change phrased relative to the capped-flux potential intensity. Thus, the wind speed dependence of surface entropy fluxes is important for intensity change in real-world storms, though it is not a necessary condition for intensification in general. Indeed, a residual power surplus may remain available to intensify a storm even in the presence of a cap, though intensification may be fully suppressed for sufficiently strong ventilation. This work complements a recent numerical simulation study and provides further evidence that there is no disconnect between extant tropical cyclone theory and the finding in numerical simulations that a storm may intensify in the presence of capped surface entropy fluxes.

Full access
Daniel R. Chavas
and
Kerry Emanuel

Abstract

Tropical cyclone size remains an unsolved problem in tropical meteorology, yet size plays a significant role in modulating damage. This work employs the Bryan cloud model (CM1) to systematically explore the sensitivity of the structure of an axisymmetric tropical cyclone at statistical equilibrium to the set of relevant model, initial, and environmental external parameters. The analysis is performed in a highly idealized state of radiative–convective equilibrium (RCE) governed by only four thermodynamic parameters, which are shown to modulate the storm structure primarily via modulation of the potential intensity.

Using dimensional analysis, the authors find that the equilibrium radial wind profile is primarily a function of a single nondimensional parameter given by the ratio of the storm radial length scale to the parameterized eddy radial length scale. The former is found to be the ratio of the potential intensity to the Coriolis parameter, matching the prediction for the “natural” storm length scale embedded within prevailing axisymmetric tropical cyclone theory; the Rossby deformation radius is shown not to be fundamental. Beyond this primary scaling, a second nondimensional parameter representing the nondimensional Ekman suction velocity is found to modulate the far outer wind field. Implications of the primary nondimensional parameter are discussed, including the critical role of effective turbulence in modulating inner-core structure and new insight into empirical estimates of the radial mixing length.

Full access
Daniel R. Chavas
and
Ning Lin

Abstract

Part I of this work developed a simple physical model for the complete radial structure of the low-level azimuthal wind field in a tropical cyclone that compared well with observations. However, wind field variability in the model is tied principally to its external parameters given by the maximum wind speed and the radius of maximum wind, the latter of which lacks a credible independent physical model for its variability. Here the authors explore the modes of variability that arise from the alternative specification of the model, which takes the outer radius in lieu of the radius of maximum wind. Nondimensionalization of the model reveals two theoretical modes of structural variability in absolute angular momentum that are shown to closely match observations. These two modes correspond to three modes of wind field variability associated with variations in intensity, outer storm size, and latitude. These wind field modes are demonstrated to mirror the dominant modes of variability found in nature, in particular the intrastorm variation of inner-core structure and the interstorm variation of overall storm size. In combination, the model offers a credible physical solution for the complete time-dependent tropical cyclone wind field in conjunction with the external specification of intensity, outer size, and latitude. More broadly, the model offers theoretical and conceptual insight into the nature of the tropical cyclone wind field, including the oft-conflated terms “size” and “structure” and their distinct variabilities.

Full access
Zhanxiang Hua
and
Daniel R. Chavas

Abstract

Recent research suggests that surface elevation variability may influence tornado activity, though separating this effect from reporting biases is difficult to do in observations. Here we employ Bayes’s law to calculate the empirical joint dependence of tornado probability on population density and elevation roughness in the vicinity of Arkansas for the period 1955–2015. This approach is based purely on data, exploits elevation and population information explicitly in the vicinity of each tornado, and enables an explicit test of the dependence of results on elevation roughness length scale. A simple log-link linear regression fit to this empirical distribution yields an 11% decrease in tornado probability per 10-m increase in elevation roughness at fixed population density for large elevation roughness length scales (15–20 km). This effect increases by at least a factor of 2 moving toward smaller length scales down to 1 km. The elevation effect exhibits no time trend, while the population bias effect decreases systematically in time, consistent with the improvement of reporting practices. Results are robust across time periods and the exclusion of EF1 tornadoes and are consistent with recent county-level and gridded analyses. This work highlights the need for a deeper physical understanding of how elevation heterogeneity affects tornadogenesis and also provides the foundation for a general Bayesian tornado probability model that integrates both meteorological and nonmeteorological parameters.

Full access
Jie Chen
and
Daniel R. Chavas

Abstract

Inland tropical cyclone (TC) impacts due to high winds and rainfall-induced flooding depend strongly on the evolution of the wind field and precipitation distribution after landfall. However, research has yet to test the detailed response of a mature TC and its hazards to changes in surface forcing in idealized settings. This work tests the transient responses of an idealized hurricane to instantaneous transitions in two key surface properties associated with landfall: roughening and drying. Simplified axisymmetric numerical modeling experiments are performed in which the surface drag coefficient and evaporative fraction are each systematically modified beneath a mature hurricane. Surface drying stabilizes the eyewall and consequently weakens the overturning circulation, thereby reducing inward angular momentum transport that slowly decays the wind field only within the inner core. In contrast, surface roughening initially (~12 h) rapidly weakens the entire low-level wind field and enhances the overturning circulation dynamically despite the concurrent thermodynamic stabilization of the eyewall; thereafter the storm gradually decays, similar to drying. As a result, total precipitation temporarily increases with roughening but uniformly decreases with drying. Storm size decreases monotonically and rapidly with surface roughening, whereas the radius of maximum wind can increase with moderate surface drying. Overall, this work provides a mechanistic foundation for understanding the inland evolution of real storms in nature.

Free access
John M. Peters
and
Daniel R. Chavas

Abstract

It is often assumed in parcel theory calculations, numerical models, and cumulus parameterizations that moist static energy (MSE) is adiabatically conserved. However, the adiabatic conservation of MSE is only approximate because of the assumption of hydrostatic balance. Two alternative variables are evaluated here: MSE − IB and MSE + KE, wherein IB is the path integral of buoyancy (B) and KE is kinetic energy. Both of these variables relax the hydrostatic assumption and are more precisely conserved than MSE. This article quantifies the errors that result from assuming that the aforementioned variables are conserved in large-eddy simulations (LES) of both disorganized and organized deep convection. Results show that both MSE − IB and MSE + KE better predict quantities along trajectories than MSE alone. MSE − IB is better conserved in isolated deep convection, whereas MSE − IB and MSE + KE perform comparably in squall-line simulations. These results are explained by differences between the pressure perturbation behavior of squall lines and isolated convection. Errors in updraft B diagnoses are universally minimized when MSE − IB is assumed to be adiabatically conserved, but only when moisture dependencies of heat capacity and temperature dependency of latent heating are accounted for. When less accurate latent heat and heat capacity formulae were used, MSE − IB yielded poorer B predictions than MSE due to compensating errors. Our results suggest that various applications would benefit from using either MSE − IB or MSE + KE instead of MSE with properly formulated heat capacities and latent heats.

Full access
Jie Chen
and
Daniel R. Chavas

Abstract

Tropical cyclones cause significant inland hazards, including wind damage and freshwater flooding, which depend strongly on how storm intensity evolves after landfall. Existing theoretical predictions for storm intensification and equilibrium storm intensity have been tested over the open ocean but have not yet been applied to storms after landfall. Recent work examined the transient response of the tropical cyclone low-level wind field to instantaneous surface roughening or drying in idealized axisymmetric f-plane simulations. Here, experiments testing combined surface roughening and drying with varying magnitudes of each are used to test theoretical predictions for the intensity response. The transient response to combined surface forcings can be reproduced by the product of their individual responses, in line with traditional potential intensity theory. Existing intensification theory is generalized to weakening and found capable of reproducing the time-dependent inland intensity decay. The initial (0–10 min) rapid decay of near-surface wind caused by surface roughening is not captured by existing theory but can be reproduced by a simple frictional spindown model, where the decay rate is a function of surface drag coefficient. Finally, the theory is shown to compare well with the prevailing empirical decay model for real-world storms. Overall, results indicate the potential for existing theory to predict how tropical cyclone intensity evolves after landfall.

Full access
Kuan-Yu Lu
and
Daniel R. Chavas

Abstract

Recent work found evidence using aquaplanet experiments that tropical cyclone (TC) size on Earth is limited by the Rhines scale, which depends on the planetary vorticity gradient β. This study aims to examine how the Rhines scale limits the size of an individual TC. The traditional Rhines scale is first reexpressed as a Rhines speed to characterize how the effect of β varies with radius in a vortex whose wind profile is known. The framework is used to define the vortex Rhines scale, which is the transition radius that divides the vortex into a vortex-dominant region at smaller radii, where the axisymmetric circulation is steady, and a wave-dominant region at larger radii, where the circulation stimulates planetary Rossby waves and dissipates. Experiments are performed using a simple barotropic model on a β plane initialized with a TC-like axisymmetric vortex defined using a recently developed theoretical TC wind profile model. The gradient β and initial vortex size are each systematically varied to investigate the detailed responses of the TC-like vortex to β. Results show that the vortex shrinks toward an equilibrium size that closely follows the vortex Rhines scale. A larger initial vortex relative to its vortex Rhines scale will shrink faster. The shrinking time scale is well described by the vortex Rhines time scale, which is defined as the overturning time scale of the circulation at the vortex Rhines scale and is shown to be directly related to the Rossby wave group velocity. The relationship between our idealized results and the real Earth is discussed. Results may generalize to other eddy circulations, such as the extratropical cyclone.

Significance Statement

Tropical cyclones vary in size significantly on Earth, but how large a tropical cyclone could potentially be is still not understood. The variation of the Coriolis parameter with latitude is known to limit the size of turbulent circulations, but its effect on tropical cyclones has not been studied. This study derives a new parameter related to this concept called the “vortex Rhines scale” and shows in a simple model how and why storms will tend to shrink toward this size. These results help explain why tropical cyclone size tends to increase slowly with latitude on Earth and can help us understand what sets the size of tropical cyclones on Earth in general.

Full access
Jie Chen
and
Daniel R. Chavas

Abstract

The impacts of a tropical cyclone after landfall depend not only on storm intensity but also on the size and structure of the wind field. Hence, a simple predictive model for the wind field after landfall has significant potential value. This work tests existing theory for wind structure and size over the ocean against idealized axisymmetric landfall experiments in which the surface beneath a mature storm is instantaneously dried and roughened individually or simultaneously. Structure theory captures the response of the low-level wind field to different types of idealized landfalls, given the intensity and size response. Storm size, modeled to follow the ratio of simulated time-dependent storm intensity to the Coriolis parameter υ m ( τ ) / f , can generally predict the transient response of the storm gale wind radii r 34kt to inland surface forcings, particularly for at least moderate surface roughening regardless of the level of drying. Given knowledge of the intensity evolution, the above results combine to yield a theoretical model that can predict the full tangential wind field response to idealized landfalls.

Significance Statement

A theoretical model that can predict the time-dependent wind field structure of landfalling tropical cyclones (TCs) with a small number of physical, observable input parameters is essential for mitigating hazards and allocating public resources. This work provides a first-order prediction of storm size and structure after landfall, which can be combined with existing intensity predictions to form a simple model describing the inland wind field evolution. Results show its potential utility for modeling idealized inland TC wind fields.

Open access
Timothy W. Cronin
and
Daniel R. Chavas

Abstract

It is widely believed that tropical cyclones are an intrinsically moist phenomenon, requiring evaporation and latent heat release in cumulus convection. Recent numerical modeling by Mrowiec et al., however, challenged this conventional wisdom by finding the formation of axisymmetric dry tropical cyclones in dry radiative–convective equilibrium (RCE). This paper addresses ensuing questions about the stability of dry tropical cyclones in 3D, the moist–dry vortex transition, and whether existing theories for intensity, size, and structure apply to dry cyclones. A convection-permitting model is used to simulate rotating 3D RCE, with surface wetness (0–1) and surface temperature (240–300 K) smoothly varying between dry and moist states. Tropical cyclones spontaneously form and persist for tens of days in both moist and dry/cold states, as well as part of the relatively moist/warm intermediate parameter space. As the surface is dried or cooled, cyclones weaken, both in absolute terms and relative to their potential intensities. Dry and semidry cyclones have smaller outer radii but similar-sized or larger convective centers compared to moist cyclones, consistent with existing structural theory. Strikingly, spontaneous cyclogenesis fails to occur at moderately low surface wetness values and intermediate surface temperatures of 250–270 K. Simulations with time-varying surface moisture and sea surface temperatures indicate this range of parameter space is a barrier to spontaneous genesis but not cyclone existence. Dry and semidry tropical cyclones in rotating RCE provide a compelling model system to further our understanding of real moist tropical cyclones.

Full access