Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Daniela Spade x
  • All content x
Clear All Modify Search
Daniela Spade, Kirsten de Beurs, and Mark Shafer


Evaluation of the standardized precipitation index (SPI) dataset published monthly in the National Oceanic and Atmospheric Administration/National Centers for Environmental Information (NOAA/NCEI) climate divisional database revealed that drought frequency is being mischaracterized in climate divisions across the United States. The 3- and 6-month September SPI values were downloaded from the database for all years between 1931 and 2019; the SPI was also calculated for the same time scales and span of years following the SPI method laid out by NOAA/NCEI. Drought frequency is characterized as the total number of years that the SPI fell below −1. SPI values across 1931–90, the calibration period cited by NOAA/NCEI, showed regional patterns in climate divisions that are biased toward or away from drought, according to the average values of the SPI. For both time scales examined, the majority of the climate divisions in the central, Midwest, and northeastern United States showed negative averages, indicating bias toward drought, whereas climate divisions in the western United States, the northern Midwest, and parts of the Southeast and Texas had positive averages, indicating bias away from drought. The standard deviation of the SPI also differed from the expected value of 1. These regional patterns in the NCEI’s SPI values are the result of a different (sliding) calibration period, 1895–2019, instead of the cited standardized period of 1931–90. The authors recommend that the NCEI modify its SPI computational procedure to reflect the best practices identified in the benchmark papers, namely, a fixed baseline period.

Open access