Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Danny E. Scipión x
  • All content x
Clear All Modify Search
Jairo M. Valdivia, Danny E. Scipión, Marco Milla, and Yamina Silva

Abstract

Agriculture is one of the main economic activities in the Peruvian Andes; rainwater alone irrigates more than 80% of the fields used for agriculture purposes. However, the cloud and rain generation mechanisms in the Andes still remain mostly unknown. In early 2014, the Instituto Geofísico del Perú (IGP) decided to intensify studies in the central Andes to better understand cloud microphysics; the Atmospheric Microphysics And Radiation Laboratory officially started operations in 2015 at IGP’s Huancayo Observatory. In this work, a Ka-band cloud profiler [cloud and precipitation profiler (MIRA-35c)], a UHF wind profiler [Clear-Air and Rainfall Estimation (CLAIRE)], and a VHF wind profiler [Boundary Layer and Tropospheric Radar (BLTR)] are used to estimate rainfall rate at different conditions. The height dependence of the drop size diameter versus the terminal velocity, obtained by the radars, in the central Andes (3350 m MSL) was evaluated. The estimates of rainfall rate are validated to ground measurements through a disdrometer [second-generation Particle, Size, and Velocity (PARSIVEL2)] and two rain gauges. The biases in the cumulative rainfall totals for the PARSIVEL2, MIRA-35c, and CLAIRE were 18%, 23%, and −32%, respectively, and their respective absolute biases were 19%, 36%, and 63%. These results suggest that a real-time calibration of the radars, MIRA-35c and CLAIRE, is necessary for better estimation of precipitation at the ground. They also show that the correction of the raindrop terminal fall velocity, obtained by separating the vertical wind velocity (BLTR), used in the estimation the raindrop diameter is not sufficient, especially in convective conditions.

Restricted access
Danny E. Scipión, Phillip B. Chilson, Evgeni Fedorovich, and Robert D. Palmer

Abstract

The daytime atmospheric convective boundary layer (CBL) is characterized by strong turbulence that is primarily caused by buoyancy forced from the heated underlying surface. The present study considers a combination of a virtual radar and large eddy simulation (LES) techniques to characterize the CBL. Data representative of a daytime CBL with wind shear were generated by LES and used in the virtual boundary layer radar (BLR) with both vertical and multiple off-vertical beams and frequencies. To evaluate the virtual radar, a multiple radar experiment (MRE) was conducted using five virtual radars with common resolution volumes at two different altitudes. Three-dimensional wind fields were retrieved from the virtual radar data and compared with the LES output. It is shown that data produced from the virtual BLR are representative of what one expects to retrieve using a real BLR and the measured wind fields match those of the LES. Additionally, results from a frequency domain interferometry (FDI) comparison are presented, with the ultimate goal of enhancing the resolution of conventional radar measurements. The virtual BLR produces measurements consistent with the LES data fields and provides a suitable platform for validating radar signal processing algorithms.

Full access