Search Results

You are looking at 1 - 10 of 22 items for

  • Author or Editor: David A Williams x
  • All content x
Clear All Modify Search
David A. Williams, Kevin J. Horsburgh, David M. Schultz, and Chris W. Hughes

Abstract

On the morning of 23 June 2016, a 0.70-m meteotsunami was observed in the English Channel between the United Kingdom and France. This wave was measured by several tide gauges and coincided with a heavily precipitating convective system producing 10 m s−1 wind speeds at the 10-m level and 1–2.5-hPa surface pressure anomalies. A combination of precipitation rate cross correlations and NCEP–NCAR Reanalysis 1 data showed that the convective system moved northeastward at 19 ± 2 m s−1. To model the meteotsunami, the finite element model Telemac was forced with an ensemble of prescribed pressure forcings, covering observational uncertainty. Ensembles simulated the observed wave period and arrival times within minutes and wave heights within tens of centimeters. A directly forced wave and a secondary coastal wave were simulated, and these amplified as they propagated. Proudman resonance was responsible for the wave amplification, and the coastal wave resulted from strong refraction of the primary wave. The main generating mechanism was the atmospheric pressure anomaly with wind stress playing a secondary role, increasing the first wave peak by 16% on average. Certain tidal conditions reduced modeled wave heights by up to 56%, by shifting the location where Proudman resonance occurred. This shift was mainly from tidal currents rather than tidal elevation directly affecting shallow-water wave speed. An improved understanding of meteotsunami return periods and generation mechanisms would be aided by tide gauge measurements sampled at less than 15-min intervals.

Full access
David A. Williams, David M. Schultz, Kevin J. Horsburgh, and Chris W. Hughes

Abstract

Meteotsunamis are shallow-water waves that, despite often being small (~0.3 m), can cause damage, injuries, and fatalities due to relatively strong currents (>1 m s−1). Previous case studies, modeling, and localized climatologies have indicated that dangerous meteotsunamis can occur across northwest Europe. Using 71 tide gauges across northwest Europe between 2010 and 2017, a regional climatology was made to understand the typical sizes, times, and atmospheric systems that generate meteotsunamis. A total of 349 meteotsunamis (54.0 meteotsunamis per year) were identified with 0.27–0.40-m median wave heights. The largest waves (~1 m high) were measured in France and the Republic of Ireland. Most meteotsunamis were identified in winter (43%–59%), and the fewest identified meteotsunamis occurred in either spring or summer (0%–15%). There was a weak diurnal signal, with most meteotsunami identifications between 1200 and 1859 UTC (30%) and the fewest between 0000 and 0659 UTC (23%). Radar-derived precipitation was used to identify and classify the morphologies of mesoscale precipitating weather systems occurring within 6 h of each meteotsunami. Most mesoscale atmospheric systems were quasi-linear systems (46%) or open-cellular convection (33%), with some nonlinear clusters (17%) and a few isolated cells (4%). These systems occurred under westerly geostrophic flow, with Proudman resonance possible in 43 out of 45 selected meteotsunamis. Because most meteotsunamis occur on cold winter days, with precipitation, and in large tides, wintertime meteotsunamis may be missed by eyewitnesses, helping to explain why previous observationally based case studies of meteotsunamis are documented predominantly in summer.

Open access
Leah R. Williams, Jeffrey A. Manion, David M. Golden, and Margaret A. Tolbert

Abstract

Increasing evidence from field, modeling, and laboratory studies suggests that heterogeneous reactions on stratospheric sulfate aerosol particles may contribute to global ozone depiction. Using a Knudsen cell reactor technique, the authors have studied the uptake, reactivity, and solubility of several trace atmospheric species on cold sulfuric acid surfaces representative of stratospheric aerosol particles. The results suggest that the heterogeneous conversion of N2O5 to HNO3 is fast enough to significantly affect the partitioning of nitrogen species in the global stratosphere and thus contribute to global ozone depletion. The hydrolysis of ClONO2 is slower and unlikely to be important under normal conditions at midlatitudes. The solubilities of HCl and HNO3 in sulfuric acid down to 200 K were found to be quite low. For HCl, this means that little HCl is available for reaction on the surfaces of stratospheric sulfate aerosol particles. The low solubility of HNO3 means that this product of heterogeneous reactions will enter the gas phase, and the denitrification observed in polar regions is unlikely to occur in the global stratosphere.

Full access
David G. Lerach, Steven A. Rutledge, Christopher R. Williams, and Robert Cifelli

Abstract

This study describes the vertical structure of mesoscale convective systems (MCSs) that characterized the 2004 North American monsoon utilizing observations from a 2875-MHz (S band) profiler and a dual-polarimetric scanning Doppler radar. Both instrument platforms operated nearly continuously during the North American Monsoon Experiment (NAME). A technique was developed to identify dominant hydrometeor type using S-band (profiler) reflectivity along with temperature. The simplified hydrometeor identification (HID) algorithm matched polarimetric scanning radar fuzzy logic–based HID results quite well. However, the simplified algorithm lacked the ability to identify ice hydrometeors below the melting layer and on occasion, underestimated the vertical extent of graupel because of a profiler reflectivity bias.

Three of the strongest NAME convective rainfall events recorded by the profiler are assessed in this study. Stratiform rain exhibited a reflectivity bright band and strong Doppler velocity gradient within the melting layer. Convective rainfall exhibited high reflectivity and Doppler velocities exceeding 3 (−10) m s−1 in updrafts (downdrafts). Low-density graupel persisted above the melting layer, often extending to 10 km, with high-density graupel observed near 0°C. Doppler velocity signatures suggested that updrafts and downdrafts were often tilted, though estimating the degree of tilt would have required a more three-dimensional view of the passing storms. Cumulative frequency distributions (CFDs) of reflectivity were created for stratiform and convective rainfall and were found to be similar to results from other tropical locations.

Full access
Anthony C. Riddle, Leslie M. Hartten, David A. Carter, Paul E. Johnston, and Christopher R. Williams

Abstract

One limiting factor in atmospheric radar observations is the inability to distinguish the often weak atmospheric signals from fluctuations of the noise. This study presents a minimum threshold of usability, SNRmin, for signal-to-noise ratios obtained from wind profiling radars. The basic form arises from theoretical considerations of radar noise; the final form includes empirical modifications based on radar observations. While SNRmin was originally developed using data from the 50-MHz profiler at Poker Flat, Alaska, it works well with data collected from a wide range of locations, frequencies, and parameter settings. It provides an objective criterion to accept or reject individual spectra, can be quickly applied to a large quantity of data, and has a false-alarm rate of approximately 0.1%. While this threshold’s form depends on the methods used to calculate SNR and spectral moments, variations of the threshold could be developed for use with data processed by other methods.

Full access
Kenneth S. Gage, Christopher R. Williams, Wallace L. Clark, Paul E. Johnston, and David A. Carter

Abstract

Doppler radar profilers are widely used for routine measurement of wind, especially in the lower troposphere. The same profilers with minor modifications are useful tools for precipitation research. Specifically, the profilers are now increasingly being used to explore the structure of precipitating cloud systems and to provide calibration and validation of other instruments used in precipitation research, including scanning radars and active and passive satellite-borne sensors. A vertically directed profiler is capable of resolving the vertical structure of precipitating cloud systems that pass overhead. Standard profiler measurements include reflectivity, reflectivity-weighted Doppler velocity, and spectral width. This paper presents profiler observations of precipitating cloud systems observed during Tropical Rainfall Measuring Mission (TRMM) Ground Validation field campaigns. The observations show similarities and differences between convective systems observed in Florida; Brazil; and Kwajalein, Republic of the Marshall Islands. In addition, it is shown how a profiler can be calibrated using a collocated Joss–Waldvogel disdrometer, how the profiler can then be used to calibrate a scanning radar, and how the profiler may be used to retrieve drop size distributions.

Full access
Ali Tokay, David A. Short, Christopher R. Williams, Warner L. Ecklund, and Kenneth S. Gage

Abstract

The motivation for this research is to move in the direction of improved algorithms for the remote sensing of rainfall, which are crucial for meso- and large-scale circulation studies and climate applications through better determinations of precipitation type and latent heating profiles. Toward this end a comparison between two independent techniques, designed to classify precipitation type from 1) a disdrometer and 2) a 915-MHz wind profiler, is presented, based on simultaneous measurements collected at the same site during the Intensive Observing Period of the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. Disdrometer-derived quantities such as differences in drop size distribution parameters, particularly the intercept parameter N 0 and rainfall rate, were used to classify rainfall as stratiform or convective. At the same time, profiler-derived quantities, namely, Doppler velocity, equivalent reflectivity, and spectral width, from Doppler spectra were used to classify precipitation type in four categories: shallow convective, deep convective, mixed convective–stratiform, and stratiform.

Overall agreement between the two algorithms is found to be reasonable. Given the disdrometer stratiform classification, the mean profile of reflectivity shows a distinct bright band and associated large vertical gradient in Doppler velocity, both indicators of stratiform rain. For the disdrometer convective classification the mean profile of reflectivity lacks a bright band, while the vertical gradient in Doppler velocity below the melting level is opposite to the stratiform case. Given the profiler classifications, in the order shallow–deep–mixed–stratiform, the composite raindrop spectra for a rainfall rate of 5 mm h−1 show an increase in D 0, the median volume diameter, consistent with the dominant microphysical processes responsible for drop formation. Nevertheless, the intercomparison does reveal some limitations in the classification methodology utilizing the disdrometer or profiler algorithms in isolation. In particular, 1) the disdrometer stratiform classification includes individual cases in which the vertical profiles appear convective, but these usually occur at times when the disdrometer classification is highly variable; 2) the profiler classification scheme also appears to classify precipitation too frequently as stratiform by including cases that have small vertical Doppler velocity gradients at the melting level but no bright band; and 3) the profiler classification scheme includes a category of mixed (stratiform–convective) precipitation that has some features in common with deep convection (e.g., enhanced spectral width above the melting level) but other features in common with stratiform precipitation (e.g., well-developed melting layer signature). Comparison of the profiler-derived vertical structure with disdrometer-determined rain rates reveals that almost all cases of rain rates greater than 10 mm h−1 are convective. For rain rates less than 5 mm h−1 all four profiler-determined precipitation classes are well represented.

Full access
James A. Carton, Stuart A. Cunningham, Eleanor Frajka-Williams, Young-Oh Kwon, David P. Marshall, and Rym Msadek
Full access
David John Gagne II, Amy McGovern, Sue Ellen Haupt, Ryan A. Sobash, John K. Williams, and Ming Xue

Abstract

Forecasting severe hail accurately requires predicting how well atmospheric conditions support the development of thunderstorms, the growth of large hail, and the minimal loss of hail mass to melting before reaching the surface. Existing hail forecasting techniques incorporate information about these processes from proximity soundings and numerical weather prediction models, but they make many simplifying assumptions, are sensitive to differences in numerical model configuration, and are often not calibrated to observations. In this paper a storm-based probabilistic machine learning hail forecasting method is developed to overcome the deficiencies of existing methods. An object identification and tracking algorithm locates potential hailstorms in convection-allowing model output and gridded radar data. Forecast storms are matched with observed storms to determine hail occurrence and the parameters of the radar-estimated hail size distribution. The database of forecast storms contains information about storm properties and the conditions of the prestorm environment. Machine learning models are used to synthesize that information to predict the probability of a storm producing hail and the radar-estimated hail size distribution parameters for each forecast storm. Forecasts from the machine learning models are produced using two convection-allowing ensemble systems and the results are compared to other hail forecasting methods. The machine learning forecasts have a higher critical success index (CSI) at most probability thresholds and greater reliability for predicting both severe and significant hail.

Full access
Kenneth S. Gage, Christopher R. Williams, Paul E. Johnston, Warner L. Ecklund, Robert Cifelli, Ali Tokay, and David A. Carter

Abstract

The National Oceanic and Atmospheric Administration’s Aeronomy Laboratory has modified a standard 915-MHz profiler for use as a precipitation profiler in support of Tropical Rainfall Measuring Mission ground validation field campaigns. This profiler was modified to look vertically with a fixed dish antenna. It was operated during the Texas and Florida Underflights Experiment (TEFLUN) A in south Texas in April–May 1998 and during TEFLUN B in central Florida in August–September 1998. Collocated with the profiler was a Distromet, Inc., RD-69 Joss–Waldvogel disdrometer in Texas and Florida and a two-dimensional video disdrometer in Florida. The disdrometers are used to calibrate the profiler at the lowest range gates. At higher altitudes, the calibrated profiler reflectivities are compared with observations made by scanning radars such as the Weather Surveillance Radar-1988 Doppler in Dickinson, Texas, and Melbourne, Florida, and the S-band Doppler dual-polarization radar in Florida. The authors conclude that it is possible to use profilers as transfer standards to calibrate and to validate the reflectivities measured by the scanning radars.

Full access