Search Results

You are looking at 1 - 10 of 33 items for

  • Author or Editor: David A. R. Kristovich x
  • Refine by Access: All Content x
Clear All Modify Search
David A. R. Kristovich
Full access
David A. R. Kristovich
Open access
Neil F. Laird and David A. R. Kristovich

Abstract

Forecasters in the Great Lakes region have for several decades recognized a general relationship of wind speed and overlake fetch to lake-effect snowstorm morphology. A recent study using idealized mesoscale model simulations of lake-effect conditions over circular and elliptical lakes showed the ratio of wind speed to maximum fetch distance (U/L) may be used to effectively predict lake-effect snowstorm morphology. The current investigation provides an assessment of the U/L criteria using observational datasets. Previously published Great Lakes lake-effect snowstorm observational studies were used to identify events of known mesoscale morphology. Hindcasts of nearly 640 lake-effect events were performed using historical observations with U/L as the predictor.

Results show that the quantity U/L contains important information on the different mesoscale lake-effect morphologies; however, it provides only a limited benefit when being used to predict mesoscale morphology in real lake-effect situations. The U/L criteria exhibited the greatest probability of detecting lake-effect shoreline band events, often the most intense, but also experienced a relatively large number of false hindcasts. For Lakes Erie and Ontario the false hindcasts and biases were reduced and shoreline band events that occurred under higher wind speed conditions were better identified.

In addition, the Great Lakes Environmental Research Laboratory ice cover digital dataset was used in combination with observations from past events to assess the impact of ice cover on the use of U/L as a predictor of lake-effect morphology. Results show that hindcasts using the U/L criteria were slightly improved when the reduction of open-water areas due to lake ice cover was taken into account.

Full access
Nancy E. Westcott and David A. R. Kristovich

Abstract

This study focuses on dense fog cases that develop in association with low clouds and sometimes precipitation. A climatology of weather conditions associated with dense fog at Peoria, Illinois, for October–March 1970–94 indicated that fog forming in the presence of low clouds is common, in 57% of all events. For events associated with low pressure systems, low clouds precede dense fog in 84% of cases. Therefore, continental fogs often do not form under the clear-sky conditions that have received the most attention in the literature. Surface cooling is usually observed prior to fog on clear nights. With low cloud bases, warming or no change in temperature is frequent. Thus, fog often forms under conditions that are not well understood, increasing the difficulty of forecasting fog. The possible mechanisms for fog development under low cloud-base conditions were explored for an event when dense fog covered much of Illinois on 7 November 2006. Weather Surveillance Radar-1988 Doppler (WSR-88D) and rawinsonde observations indicated that evaporating precipitation aloft was important in moistening the lower atmosphere. Dense fog occurred about 6 h following light precipitation at the surface. The surface was nearly saturated following precipitation, but relative cooling was needed to overcome weak warm air advection and supersaturate the lower atmosphere. Surface (2 m) temperatures were near or slightly cooler than ground temperatures in most of the region, suggesting surface sensible heat fluxes were not important in this relative cooling. Sounding data indicated drying of the atmosphere above 800 hPa. Infrared satellite imagery indicated deep clouds associated with a low pressure system moved east of Illinois by early morning, leaving only low clouds. It is hypothesized that radiational cooling of the low cloud layer was instrumental in promoting the early morning dense fog.

Full access
Neil F. Laird and David A. R. Kristovich

Abstract

An investigation of sensible and latent heat fluxes and their relation to synoptic weather events was performed using hourly meteorological measurements from National Data Buoy Center buoy 45003, located in northern Lake Huron, during April–November of 1984. Two temporal heat flux regimes were found to exist over Lake Huron. The first period extended from April through July and was characterized by periods of modest negative (downward) heat fluxes. The second regime was marked by periods of large positive (upward) heat fluxes and occurred from August through November. This later period accounted for 95%–100% of both the total positive sensible and latent heat fluxes. In addition, a comparison of the seasonal evolution of sensible and latent heat fluxes showed the transition from the negative to the positive flux regime occurred 10–20 days earlier for latent heat flux than for sensible heat flux. A notable, statistically significant increase of the surface heat flux variability from the negative to positive flux regimes with a general decrease in the near-surface atmospheric stability during the positive flux regime was found. During both flux regimes, the magnitude of surface sensible and latent heat fluxes remained coupled to transient synoptic-scale weather events. On average, the occurrences of minimum (maximum) heat fluxes preceded time periods of low (high) sea level pressure by 0–3 h during the negative flux regime. For the positive flux regime, maximum (minimum) surface heat fluxes followed the passage of low (high) pressure by approximately 24 h. In addition, maximum (minimum) sensible and latent heat fluxes preceded synoptic high (low) pressure by approximately 16 h. Typical synoptic surface weather patterns were identified for both significant positive and negative heat flux events, time periods when the atmosphere–lake heat exchange was maximized.

Full access
David A. R. Kristovich and Neil F. Laird

Abstract

Large spatial and temporal variations were observed in the location of the upwind cloud edge over Lake Michigan during five westerly wind lake-effect events in November 1995 through January 1996. This study examines the impacts of variations of Lake Michigan surface water temperatures (and corresponding surface fluxes) and upwind static stability on the location of the upwind edge of lake-effect clouds, which develop as cold air crosses the lake during the winter. Data used in this study were collected during the 1995/96 National Weather Service Lake-Effect Snow study. Spatial variations in the location of the upwind lake-effect cloud edge are shown to be related to spatial variations in surface heat and moisture fluxes between the lake surface and overlying air. Surface fluxes are influenced by both the distribution of lake surface water temperatures and variations of surface wind speed, air temperature, and relative humidity. Temporal variations of heat and moisture fluxes from the lake surface and low-level static stability upwind of the lake correlate well with changes in locations of the upwind lake-effect cloud edge. In general, increases in total flux over a particular period tended to correspond with westward change in the position of the upwind cloud edge, whereas decreases in total flux corresponded to eastward shifts of the upwind cloud edge. Atmospheric static stability below the upwind inversion was found to be more important than the inversion height in controlling the location of the upwind cloud edge over the lake, with increases in stability corresponding to eastward shifts in its location.

Full access
Luke Bard and David A. R. Kristovich

Abstract

One of the most notable ways the Laurentian Great Lakes impact the region’s climate is by augmenting snowfall in downwind locations during autumn and winter months. Among many negative consequences, this surplus of snow can cause substantial property damage to homes and can escalate the number of traffic accident–related injuries and fatalities. The consensus among several previous studies is that lake-effect snowfall increased during the twentieth century in various locations in the Great Lakes region. The goal of this study is to better understand variability and long-term trends in Lake Michigan’s lake-contribution snowfall (LCS). LCS accounts for both lake-effect and lake-enhanced events. In addition, this study updates findings from previous investigations using snowfall observations found by a recent study to be appropriate for climate studies. It is demonstrated that considerable variability exists in 5-yr periods of LCS east and south of Lake Michigan from 1920 to 2005. A general increase in LCS from the early 1920s to the 1950–80 period at locations typically downwind of the lake was found. Thereafter, LCS decreased through the early 2000s, indicating a distinct trend reversal that is not reported by earlier studies. The reasons for this reversal are unclear. The reversal is consistent with observed increasing minimum temperatures during winter months after the 1970s, however.

Full access
Faye E. Barthold and David A. R. Kristovich

Abstract

While the total snowfall produced in lake-effect storms can be considerable, little is known about how clouds and snow evolve within lake-effect boundary layers. Data collected over Lake Michigan on 10 January 1998 during the Lake-Induced Convection Experiment (Lake-ICE) are analyzed to better understand and quantify the evolution of clouds and snow. On this date, relatively cold air flowed from west to east across Lake Michigan, creating a quasi-steady-state boundary layer that increased from ≈675 to ≈910 m in depth over a distance of 80 km. Once a cloud deck formed 14–18 km from the upwind shoreline, maximum cloud particle concentrations and liquid water content increased from west to east across the lake. Correspondingly, maximum ice water contents, snowfall rates, and maximum snow particle diameters also increased across the lake. Maximum particle concentrations were found below the mean top of the boundary layer and above the cloud base for both cloud and snow particles.

Surprisingly, snow particles were observed 3–7 km upwind of the upwind edge of the lake-effect cloud deck. These snow particles were observed to be rather spatially uniform throughout the boundary layer. Based on available observations, it is hypothesized that of the mechanisms that could produce this snow, the majority of it originated from transient clouds located near the upwind shore. In addition, maximum snow particle concentrations peaked near the middle of the lake before decreasing toward the downwind shore, indicating the location after which aggregation became an important snow growth mechanism. These results show that the evolution of clouds and snow within lake-effect boundary layers may not occur in the uniform manner often depicted in conceptual models.

Full access
Jason M. Keeler and David A. R. Kristovich

Abstract

Predictions of lake and sea breezes are particularly important in large coastal population centers because of the circulations’ influence on heat-wave relief, energy use, precipitation, and dispersion of pollutants. While recent numerical modeling studies have suggested that sea or lake breezes should move more slowly through urban areas than in the surrounding suburbs because of urban heat island (UHI) circulations, there have been few quantitative observational studies to evaluate these results. This study utilizes high-resolution Weather Surveillance Radar-1988 Doppler (WSR-88D) observations to determine the effect of the UHI on lake-breeze frontal movement through Chicago, Illinois, and nearby suburban areas. A total of 44 lake-breeze cases from the April–September 2005 period were examined. The inland movement of the lake-breeze front (LBF) was calculated by tracking “fine lines” of radar reflectivity along several cross sections perpendicular to the Lake Michigan shoreline. The average inland propagation speed of the LBF was 5.0 km h−1; there was substantial spatial and temporal variability in LBF propagation, however. Chicago’s UHI magnitude on lake-breeze days exhibited an average nighttime maximum urban–rural temperature difference near 4.5°C and an afternoon minimum near 0°C. The observed daytime UHI magnitude did not have a significant relationship with lake-breeze frontal movement through Chicago. However, the maximum magnitude of the nighttime UHI preceding lake-breeze development was found to be strongly related to a decrease in speed of LBF movement through Chicago’s southwest (inland) suburbs. This relationship is consistent with previous studies of the diurnal evolution of UHI circulations and may represent a useful method for predicting lake-breeze inland movement.

Full access
David A. R. Kristovich and Michael L. Spinar

Abstract

Lake-effect snowstorms are important parts of the climate of the U.S. Upper Midwest, with significant economic and societal impacts on communities close to the Great Lakes. Some impacts, particularly those on air and ground transportation, depend critically on the time of day that lake-effect precipitation occurs. This study utilizes hourly precipitation data collected near Lakes Superior and Michigan to determine the diurnal behavior of lake-effect precipitation frequency. Precipitation data from approximately 200 lake-effect days during 1988–93, identified by a previous study based on visible satellite data, are examined. A distinct morning maximum and afternoon/evening minimum in lake-effect precipitation frequency was observed, with the largest variations at sites within the snowbelt regions. The relative importance of several factors known to influence lake-effect precipitation development was examined to gain insight into the physical mechanisms controlling the diurnal evolution of lake-effect precipitation.

Full access