Search Results

You are looking at 1 - 10 of 15 items for

  • Author or Editor: David A. Schecter x
  • Refine by Access: All Content x
Clear All Modify Search
David A. Schecter

Abstract

The evolution of two symmetric midlevel mesoscale vortices situated above a warm ocean is examined with a basic cloud-resolving model. Idealized numerical experiments provide insight into how the evolution may vary with the initial vortex separation distance D and other parameters that influence the time scale for an isolated vortex to begin rapid intensification. The latter parameters include the ambient middle-tropospheric relative humidity (RH) and the initial midlevel wind speed of each vortex. At relatively low RH, there exists an interval of D where binary midlevel vortex interaction prevents tropical cyclone formation. While tropical cyclones generally develop at high RH, similar values of D can delay the process if the vortices are initially weak. Prevention or inhibition of tropical cyclone formation occurs in association with the outward expulsion of lower-tropospheric potential vorticity anomalies as the two vortices merge in the middle troposphere. It is proposed that the primary mechanism for midlevel merger and low-level potential vorticity expulsion involves the excitation of rotating misalignments in each vortex. An analog model based on this premise provides a good approximation for the range of D in which the merger–expulsion scenario occurs. Relatively strong vortices in high-RH environments promptly develop vigorous convection and begin rapid intensification. Differences between the interaction of such diabatic vortices and their adiabatic counterparts are briefly illustrated. In systems that generate tropical cyclones, the mature vortex properties (size and strength) are found to vary significantly with D.

Full access
David A. Schecter

Abstract

A cloud-resolving model is used to examine the intensification of tilted tropical cyclones from depression to hurricane strength over relatively cool and warm oceans under idealized conditions where environmental vertical wind shear has become minimal. Variation of the SST does not substantially change the time-averaged relationship between tilt and the radial length scale of the inner core, or between tilt and the azimuthal distribution of precipitation during the hurricane formation period (HFP). By contrast, for systems having similar structural parameters, the HFP lengthens superlinearly in association with a decline of the precipitation rate as the SST decreases from 30° to 26°C. In many simulations, hurricane formation progresses from a phase of slow or neutral intensification to fast spinup. The transition to fast spinup occurs after the magnitudes of tilt and convective asymmetry drop below certain SST-dependent levels following an alignment process explained in an earlier paper. For reasons examined herein, the alignment coincides with enhancements of lower–middle-tropospheric relative humidity and lower-tropospheric CAPE inward of the radius of maximum surface wind speed rm. Such moist-thermodynamic modifications appear to facilitate initiation of the faster mode of intensification, which involves contraction of rm and the characteristic radius of deep convection. The mean transitional values of the tilt magnitude and lower–middle-tropospheric relative humidity for SSTs of 28°–30°C are respectively higher and lower than their counterparts at 26°C. Greater magnitudes of the surface enthalpy flux and core deep-layer CAPE found at the higher SSTs plausibly compensate for less complete alignment and core humidification at the transition time.

Restricted access
David A. Schecter

Abstract

This paper presents a convenient method for diagnosing the sources of infrasound in a numerical simulation of a convective storm. The method is based on an exact acoustic wave equation for the perturbation Exner function Π′. One notable source term (Suu) in the Π′ equation is commonly associated with adiabatic vortex fluctuations, whereas another (Sm) is directly connected to the heat and mass generated or removed during phase transitions of moisture. Scale estimates suggest that other potential sources are usually unimportant. Simple numerical simulations of a disturbed vortex and evaporating cloud droplets are carried out to illustrate the infrasound of Suu and Sm. Moreover, the diagnostic method is applied to a towering cumulonimbus simulation that incorporates multiple categories of ice, liquid, and mixed-phase hydrometeors. The sensitivity of Sm to the modeling of the hail-to-rain category conversion is briefly addressed.

Full access
David A. Schecter

Abstract

This paper discusses recent progress toward understanding the instability of a monotonic vortex at high Rossby number, due to the radiation of spiral inertia–gravity (IG) waves. The outward-propagating IG waves are excited by inner undulations of potential vorticity that consist of one or more vortex Rossby waves. An individual vortex Rossby wave and its IG wave emission have angular pseudomomenta of opposite sign, positive and negative, respectively. The Rossby wave therefore grows in response to producing radiation. Such growth is potentially suppressed by the resonant absorption of angular pseudomomentum in a critical layer, where the angular phase velocity of the Rossby wave matches the angular velocity of the mean flow. Suppression requires a sufficiently steep radial gradient of potential vorticity in the critical layer. Both linear and nonlinear steepness requirements are reviewed.

The formal theory of radiation-driven instability, or “spontaneous imbalance,” is generalized in isentropic coordinates to baroclinic vortices that possess active critical layers. Furthermore, the rate of angular momentum loss by IG wave radiation is reexamined in the hurricane parameter regime. Numerical results suggest that the negative radiation torque on a hurricane has a smaller impact than surface drag, despite recent estimates of its large magnitude.

Full access
David A. Schecter

Abstract

It has been proposed that the 0.5–10-Hz infrasound emitted by a severe storm is primarily generated by the axisymmetric oscillations of a tornado. This interpretation is challenged by a critical review of its theoretical foundation. A basic linear analysis shows that the principal axisymmetric oscillations of a subsonic, columnar vortex (axisymmetric Kelvin modes) cannot excite acoustic radiation. Numerical experiments further show that axisymmetric radiation is shaped primarily by the impulse that triggers the emission, not the properties of the vortex.

Full access
David A. Schecter

Abstract

This paper compares the tilt dynamics of a mature tropical cyclone simulated with a conventional cloud model to reduced modeling results and theoretical predictions. The primary experiment involves a tropical cyclone of hurricane strength on the f plane exposed to a finite period of idealized misalignment forcing. A complementary experiment shows how the vortex responds to the same forcing when moisture and symmetric secondary circulation (SSC) are removed from the initial condition. It is found that the applied forcing excites a much stronger tilt mode in the dry nonconvective vortex than in the moist convective hurricane. The evolution of tilt in both experiments agrees reasonably well with a simple linear response theory that neglects the SSC and assumes moisture merely reduces static stability in the vortex core. An additional experiment with suspended cloud water but no substantial SSC supports the theoretical notion that reduction of static stability is sufficient to inhibit the excitation of a tilt mode. However, there is some discrepancy between theory and details of asymmetric convection in the eyewall region of the simulated hurricane. Moreover, a final experiment without moisture but with an artificially maintained secondary circulation suggests that the SSC has a nonnegligible role in reducing tilt. Diagnosis of the primary hurricane simulation further illustrates how the SSC has discernible influence over misalignment at least in the eyewall. Sensitivity of tilt dynamics to the azimuthally averaged vortex structure is briefly addressed.

Full access
David A. Schecter and Konstantinos Menelaou

Abstract

A method is outlined for quantitatively assessing the impact of inertia–gravity wave radiation on the multimechanistic instability modes of a columnar stratified vortex that resembles an intense tropical cyclone. The method begins by decomposing the velocity field into one part that is formally associated with sources inside the vortex and another part that is attributed to radiation. The relative importance of radiation is assessed by comparing the rates at which the two partial velocity fields act to amplify the perturbation of an arbitrary tracer field—such as potential vorticity—inside the vortex. Further insight is gained by decomposing the formal vortex contribution to the amplification rate into subparts that are primarily associated with distinct vortex Rossby waves and critical-layer perturbations.

Full access
David A. Schecter and Konstantinos Menelaou

Abstract

A cloud-resolving model is used to examine the virtually shear-free evolution of incipient tropical cyclones initialized with different degrees of misalignment between the lower- and middle-tropospheric centers of rotation. Increasing the initial displacement of rotational centers (the tilt) from a negligible value to several hundred kilometers extends the time scale of hurricane formation from 1 to 10 days. Hindered amplification of the maximum tangential velocity υ m at the surface of a strongly perturbed system is related to an extended duration of misalignment resulting from incomplete early decay and subsequent transient growth of the tilt magnitude. The prolonged misalignment coincides with a prolonged period of asymmetric convection peaked far from the surface center of the vortex. A Sawyer–Eliassen model is used to analyze the disparity between azimuthal velocity tendencies of selected pre–tropical storm vortices with low and high degrees of misalignment. Although no single factor completely explains the difference of intensification rates, greater misalignment is linked to weaker positive azimuthal velocity forcing near υ m by the component of the mean secondary circulation attributed to heating by microphysical cloud processes. Of note regarding the dynamics, enhanced tilt only modestly affects the growth rate of kinetic energy outside the core of the surface vortex while severely hindering intensification of υ m within the core for at least several days. The processes controlling the evolution of the misalignment associated with inefficient development are examined in detail for a selected simulation. It is found that adiabatic mechanisms are capable of driving the transient amplification of tilt, whereas diabatic processes are essential to ultimate alignment of the tropical cyclone.

Free access
David A. Schecter and Michael T. Montgomery

Abstract

This paper derives a system of equations that approximately govern small-amplitude perturbations in a nonprecipitating cloudy vortex. The cloud coverage can be partial or complete. The model is used to examine moist vortex Rossby wave dynamics analytically and computationally. One example shows that clouds can slow the growth of phase-locked counter-propagating vortex Rossby waves in the eyewall of a hurricane-like vortex. Another example shows that clouds can (indirectly) damp discrete vortex Rossby waves that would otherwise grow and excite spiral inertia–gravity wave radiation from a monotonic cyclone at high Rossby number.

Full access
David A. Schecter and Melville E. Nicholls

Abstract

The dynamical core of the Regional Atmospheric Modeling System has been tailored to simulate the infrasound of vortex motions and diabatic cloud processes in a convective storm. Earlier studies have shown that the customized model (c-RAMS) adequately simulates the infrasonic emissions of generic vortex oscillations. This paper provides evidence that c-RAMS accurately simulates the infrasound associated with parameterized phase transitions of cloud moisture. Specifically, analytical expressions are derived for the infrasonic emissions of evaporating water droplets in dry and humid environments. The dry analysis considers two single-moment parameterizations of the microphysics, which have distinguishable acoustic signatures. In general, the analytical results agree with the numerical output of the model. An appendix briefly demonstrates the ability of c-RAMS to accurately simulate the infrasound of the entropy and mass sources generated by an equilibrating cloud of icy hydrometeors.

Full access