Search Results

You are looking at 1 - 10 of 22 items for

  • Author or Editor: David Cook x
  • Refine by Access: All Content x
Clear All Modify Search
Doyle Cook
and
David R. Smith

Forecasts issued to the public during the 10-year period 1966–75 by the National Weather Service Forecast Office, Louisville, Ky., are compared with guidance forecasts produced by the National Meteorological Center for the same location. There was little overall change in the quality of forecasts issued to the public, but the guidance forecasts have improved to the extent that they are now of a quality comparable to those issued to the Louisville public.

Full access
Ryan D. Torn
and
David Cook

Abstract

An ensemble of Weather Research and Forecasting Model (WRF) forecasts initialized from a cycling ensemble Kalman filter (EnKF) system is used to evaluate the sensitivity of Hurricanes Danielle and Karl’s (2010) genesis forecasts to vortex and environmental initial conditions via ensemble sensitivity analysis. Both the Danielle and Karl forecasts are sensitive to the 0-h circulation associated with the pregenesis system over a deep layer and to the temperature and water vapor mixing ratio within the vortex over a comparatively shallow layer. Empirical orthogonal functions (EOFs) of the 0-h ensemble kinematic and thermodynamic fields within the vortex indicate that the 0-h circulation and moisture fields covary with one another, such that a stronger vortex is associated with higher moisture through the column. Forecasts of the pregenesis system intensity are only sensitive to the leading mode of variability in the vortex fields, suggesting that only specific initial condition perturbations associated with the vortex will amplify with time. Multivariate regressions of the vortex EOFs and environmental parameters believed to impact genesis suggest that the Karl forecast is most sensitive to the vortex structure, with smaller sensitivity to the upwind integrated water vapor and 200–850-hPa vertical wind shear magnitude. By contrast, the Danielle forecast is most sensitive to the vortex structure during the first 24 h, but is more sensitive to the 200-hPa divergence and vertical wind shear magnitude at longer forecast hours.

Full access
J. David Neelin
,
Isaac M. Held
, and
Kerry H. Cook

Abstract

A mechanism by which feedback between zonal wind perturbations and evaporation can create unstable, low-frequency modes in a simple two-layer model of the tropical troposphere is presented. The modes resemble the 30–50 day oscillation. A series of general circulation model experiments designed to test the effect of suppressing this feedback on low-frequency variability in the model tropics is described. The results suggest that the evaporation-wind feedback can be important to the amplitude of the spectral peak corresponding to the 30–50 day oscillation in the model, but that the existence of the oscillation does not depend on it. The feedback is found to have a much more dramatic effect on low-frequency variability when sea surface temperatures are fixed than when the lower boundary is a zero heat capacity “swamp”.

Full access
Falko K. Fye
,
David W. Stahle
, and
Edward R. Cook

Abstract

Three great moisture anomalies were observed during the twentieth century over the western United States: a pluvial from 1905 to 1917, the Dust Bowl drought (1929–40), and the Southwestern drought of 1946–56. A composite analysis of the concurrent Pacific sea surface temperature (SST) field is used to infer the atmospheric circulation that may have been associated with these objectively defined decadal dry and wet periods. The early-twentieth-century pluvial occurred during a 13-yr SST regime with unusually cold water in the northern and northwestern North Pacific and in the eastern North Pacific. This pattern would favor a “Pineapple Express–like” mean storm track into the west. Warm ENSO-like conditions also observed during the pluvial would have favored an enhanced subtropical jet stream into the southwestern United States. The 11-yr Dust Bowl drought occurred during a poorly defined Pacific SST regime, although unusually cold water was present in the far western North Pacific. Weak warm SST conditions were also noted in the extreme northeastern North Pacific. This cold west–warm east SST pattern, although weak for the full 11-yr interval, may have contributed to positive atmospheric geopotential heights over the western and central United States during the Dust Bowl drought. Cooler SSTs in the eastern equatorial Pacific during some of the Dust Bowl years (e.g., 1934, 1935, 1938, and 1939) suggest a possible La Niña influence. La Niña conditions definitely seemed to have contributed to the 1950s drought, but the most anomalous SSTs for the 11-yr average were observed in the west-central North Pacific. The overall Pacific SST field during the 1946–56 drought was consistent with the cool phase of the Pacific decadal oscillation, and the warm SSTs in the west-central North Pacific would have favored a trough over the central North Pacific and a ridge over western North America in the upper-tropospheric flow.

Full access
J. Scott Greene
,
W. Ethan Cook
,
David Knapp
, and
Patrick Haines

Abstract

Meteorological models need to be compared to long-term, routinely collected meteorological data. Whenever numerical forecast models are validated and compared, verification winds are normally interpolated to individual model grid points. To be statistically significant, differences between model and verification data must exceed the uncertainty of verification winds due to instrument error, sampling, and interpolation. This paper will describe an approach to examine the uncertainty of interpolated boundary layer winds and illustrate its practical effects on model validation and intercomparison efforts. This effort is part of a joint model validation project undertaken by the Environmental Verification and Analysis Center at the University of Oklahoma (http://www.evac.ou.edu) and the Battlefield Environment Directorate of the Army Research Laboratory. The main result of this study is to illustrate that it is crucial to recognize the errors inherent in gridding verification winds when conducting model validation and intercomparison work. Defendable model intercomparison results may rely on proper scheduling of model tests with regard to seasonal wind climatology and choosing instrument networks and variogram functions capable of providing adequately small errors due to sampling and imperfect modeling. Thus, it is important to quantify verification wind uncertainty when stating forecast errors or differences in the accuracy of forecast models.

Full access
Falko K. Fye
,
David W. Stahle
, and
Edward R. Cook

Instrumental Palmer Drought Severity Indexes (PDSI) averaged over the western United States and Great Plains document three major decadal moisture regimes during the twentieth century: the early twentieth-century pluvial, the Dust Bowl drought, and the 1950s drought. Tree-ring reconstructed PDSI for the contiguous Unites States replicates these three twentieth-century moisture regimes, and have been used to search for possible analogs over the past 500 yr. The early twentieth-century wet regime from 1905 to 1917 appears to have been the wettest episode across the West since A.D.1 500, but similar pluvials occurred in the nineteenth, seventeenth, and sixteenth centuries. The Dust Bowl drought (1929–40) was most severe over the northern Plains to the northern Rockies. No close analogs are found for the full severity and geographical focus of the Dust Bowl drought over the past 500 yr. The 1950s drought (1946–56) was concentrated over the Southwest and was replicated by some 12 droughts of similar spatial coverage and duration over the past 500 yr. One of these analogs, the sixteenth-century mega-drought, was also focused over the Southwest and appears to have surpassed the Dust Bowl drought in coverage, duration, and severity.

Full access
Edward R. Cook
,
David M. Meko
, and
Charles W. Stockton

Abstract

A new drought area index (DAI) for the United States has been developed based on a high-quality network of drought reconstructions from tree rings. This DAI is remarkably similar to one developed earlier based on much less data and shows strong evidence for a persistent bidecadal drought rhythm in the western United States since 1700. This rhythm has in the past been associated with possible forcing by the 22-yr Hale solar magnetic cycle and the 18.6-yr lunar nodal tidal cycle. The authors make a new assessment of these possible forcings on DAI using different methods of analysis. In so doing, they confirm most of the previous findings. In particular, there is a reasonably strong statistical association between the bidecadal drought area rhythm and years of Hale solar cycle minima and 18.6-yr lunar tidal maxima. The authors also show that the putative solar and lunar effects appear to be interacting to modulate the drought area rhythm, especially since 1800. These results do not eliminate the possibility that the drought area rhythm is, in fact, internally forced by coupled ocean–atmosphere processes. Recent modeling results suggest that unstable ocean–atmosphere interactions in the North Pacific could be responsible for the drought rhythm as well. However, the results presented here do not easily allow for the rejection of the solar and lunar forcing hypotheses either.

Full access
Geng Xia
,
Caroline Draxl
,
Larry K. Berg
, and
David Cook

Abstract

We investigate the impact of three land surface models (LSMs) on simulating hub-height wind speed under three different soil regimes (dry, wet, and frozen) to improve understanding of the physics of wind energy forecasts using the Weather Research and Forecasting (WRF) Model. A 6-day representative period is selected for each soil condition. The simulated wind speed, surface energy budget, and soil properties are compared with the observations collected from the second Wind Forecast Improvement Project (WFIP2). For the selected cases, our simulation results suggest that the impact of LSMs on hub-height wind speed are sensitive to the soil states but not so much to the choice of LSM. The simulated hub-height wind speed is in much better agreement with the observations for the dry soil case than the wet and frozen soil cases. Over the dry soil, there is a strong physical connection between the land surface and hub-height wind speed through near-surface turbulent mixing. Over the wet soil, the simulated hub-height wind speed is less impacted by the land surface due to weaker surface fluxes and large-scale synoptic disturbances. Over the frozen soil, the LSM seems to have limited impact on hub-height wind speed variability due to the decoupling of the land surface with the overlying atmosphere. Two main sources of modeling uncertainties are proposed. The first is the insufficient model physics representing the surface energy budget, especially the ground heat flux, and the second is the inaccurate initial soil states such as soil temperature and soil moisture.

Full access
David Meko
,
Edward R. Cook
,
David W. Stahle
,
Charles W. Stockton
, and
Malcolm K. Hughes

Abstract

A network of 248 tree-ring chronologies in the conterminous United States is assembled and analyzed by rotated principal components analysis (RPCA) to delineate “regions” of common tree-growth variation during the period 1705–1979. Spatial continuity of the tree-ring data is summarized by variogram analysis, and tree-ring data are gridded before RPCA to reduce effects of site clustering. Principal component drought information is evaluated by comparing PC scores and primary pattern coefficients with Palmer Drought Severity Index (PDSI) data from instrumental records.

High PC pattern coefficients group geographically into regions coinciding roughly with nine drought regions delineated by RPCA of PDSI by other researchers. The drought signal as measured by the correlation between tree-ring PC scores and July PDSI, 1929–79, is strongest in the South and the interior West (r>0.7), and weakest in the Northeast and Pacific Northwest (r<0.16). A count of years with large negative PC scores in multiple regions marks the 1950s as the extreme in widespread drought across the southern United States to 1705.

Tree-growth regions are sensitive to whether tree-ring data are gridded before RPCA. Principal components on ungridded tree-ring data tend to center on dense clusters of sites. The importance of site density is most noticeable in the RPCA results for the southeast, where the gridded data yield a PC centered on a group of climate-sensitive but widely spaced bald cypress chronologies. Cross-validation indicates that gridding of tree-ring anomalies over different species for drought reconstruction is more appropriate in the semiarid southwest than in cooler, moister regions—especially the northeast and the Pacific Northwest. Our results endorse the large-scale chronology network as a long-term proxy for the spatial and temporal patterns of past drought across the United States.

Full access
David W. Reynolds
,
David A. Clark
,
F. Wesley Wilson
, and
Lara Cook

During summer, marine stratus encroaches into the approach to San Francisco International Airport (SFO) bringing low ceilings. Low ceilings restrict landings and result in a high number of arrival delays, thus impacting the National Air Space (NAS). These delays are managed by implementation of ground delay programs (GDPs), which hold traffic on the ground at origination airports in anticipation of insufficient arrival capacity at SFO. In an effort to reduce delays and improve both airport and NAS efficiency, the Federal Aviation Administration (FAA) funded a research effort begun in 1995 to develop an objective decision support system to aid forecasters in the prediction of stratus clearing times. By improving forecasts at this major airport, the scope and duration of ground and airborne holds can be reduced. The Marine Stratus Forecast System (MSFS) issues forecasts both deterministically and probabilistically. Following transition to NWS operations in 2004, the system continued to provide reliable forecasts but showed no significant improvement in delay reduction. Changes to the FAA GDP issuance procedures in 2008 allowed them to utilize the improved forecasts, leading to quantifiable reductions in ground and airborne holds for SFO equating to dollars saved. To further reduce delays, a refined statistically based model, the Ground Delay Parameters Selection Model (GPSM) for selecting an optimal ground delay strategy has been developed, utilizing the available archive of objective MSFS probabilistic forecasts and accompanying traffic flow data. This effort represents one of the first systematic attempts to integrate objective probabilistic weather information into the air traffic flow decision process, which is a cornerstone element of the FAA's visionary NextGen program.

Full access