Search Results

You are looking at 1 - 10 of 106 items for

  • Author or Editor: David H. Bromwich x
  • Refine by Access: All Content x
Clear All Modify Search
David H. Bromwich
Full access
David H. Bromwich
Full access
David H. Bromwich

Prominent warm signatures of strong, negatively buoyant, katabatic airstreams are present at thermal infrared wavelengths as a result of intense vertical mixing and drift-snow transport within stable boundary layers. These tracers are used to illustrate several aspects of the behavior of katabatic winds in the Ross Sea sector of the Antarctic. The satellite features are compared with surface-based observations whenever possible. Converging surface-wind signatures upslope from Terra Nova Bay are shown to closely follow the observed time-averaged streamlines of drainage airflow. The satellite-observed core of the katabatic airstream descends to sea level via a direct route, but complex three-dimensional trajectories are manifested in marginal regions. Katabatic winds propagating horizontally for hundreds of kilometers over the southwestern Ross Sea do not exhibit the expected influence of the Coriolis force. Katabatic signatures are shown to be climatological features over the Ross Ice Shelf which closely follow surface wind measurements. An approximate proportionality appears to exist between average signature size over the shelf and the magnitude of katabatic mass transport from the plateau.

Full access
David H. Bromwich

Abstract

Two years of automatic weather station (AWS) observations and satellite images have been used to study mesoscale cyclogenesis along the Transantarctic Mountains. Twice-daily regional sea-level pressure analyses revealed the frequent formation of mesoscale cyclones adjacent to two regions where the discharge of cold boundary-layer air from east Antarctica is concentrated: near Terra Nova Bay/Franklin Island and Byrd Glacier. Between one and two new vortices on average formed each week in the former location with weak frequency maxima in December–March and August–September. There was a large difference between the cyclogenetic activity in the two years. The AWS array expanded in 1985 and resolved another cyclogenetic area near Byrd Glacier. This feature was half as active as the Franklin Island area and exhibited many of the same characteristics. About half of the Byrd Glacier cyclones developed simultaneously with vortices near Franklin Island.

These developments are the result of a dry baroclinic process with marked baroclinicity and weak cyclonic vorticity appearing to be boundary-layer prerequisites. There is little consistent upper-air support associated with the cyclogeneses, but such factors often play a key role in subsequent storm evolution. The evidence suggests that synoptic forcing plays a significant genetic role via troughs attached to, but ahead of, maritime cyclones centered to the northwest of the Ross Sea.

Full access
David H. Bromwich

Abstract

Three years of automatic weather station observations for the months of February to April show that intense katabatic winds persistently blow across the western shore of Terra Nova Bay. The data demonstrate that the anomalously strong katabatic winds of Adelie Land are not unique, and thus strongly support the proposition that most of the cold boundary layer air from the ice sheet crosses the coastline in a small number of narrow zones. Furthermore the observations prove that katabatic winds can routinely blow for substantial distances across flat terrain in marked contrast to the abrupt dissipation previously monitored just offshore from East Antarctica. Winter wind conditions onset suddenly in mid-February and are characterized by negligible directional variations and by speeds mostly ranging between 10 and 30 m s−1.

Katabatic winds at Terra Nova Bay both affect and are affected by the regional atmospheric circulation. This katabatic airflow is a time-averaged source of cold boundary layer air for the western Ross Sea. Maximum thermal contrast with the regional temperature field occurs between January and June. Temperature observations suggest that the katabatic winds at Inexpressible Island am primarily of the boratype throughout the year. Strong southerly geostrophic winds over the western Ross Sea appear to suppress the katabatic outflow during winter while weak zonal pressure gradients coincide with intensified katabatic drainage. This relationship is suggested to arise because clouds modulate the radiative production of cold surface air over the interior of the ice sheet.

Full access
Keith M. Hines
and
David H. Bromwich

Abstract

A polar-optimized version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) was developed to fill climate and synoptic needs of the polar science community and to achieve an improved regional performance. To continue the goal of enhanced polar mesoscale modeling, polar optimization should now be applied toward the state-of-the-art Weather Research and Forecasting (WRF) Model. Evaluations and optimizations are especially needed for the boundary layer parameterization, cloud physics, snow surface physics, and sea ice treatment. Testing and development work for Polar WRF begins with simulations for ice sheet surface conditions using a Greenland-area domain with 24-km resolution. The winter month December 2002 and the summer month June 2001 are simulated with WRF, version 2.1.1, in a series of 48-h integrations initialized daily at 0000 UTC. The results motivated several improvements to Polar WRF, especially to the Noah land surface model (LSM) and the snowpack treatment. Different physics packages for WRF are evaluated with December 2002 simulations that show variable forecast skill when verified with the automatic weather station observations. The WRF simulation with the combination of the modified Noah LSM, the Mellor–Yamada–Janjić boundary layer parameterization, and the WRF single-moment microphysics produced results that reach or exceed the success standards of a Polar MM5 simulation for December 2002. For summer simulations of June 2001, WRF simulates an improved surface energy balance, and shows forecast skill nearly equal to that of Polar MM5.

Full access
Thomas R. Parish
and
David H. Bromwich

Abstract

Previous work has shown that winds in the lower atmosphere over the Antarctic continent are among the most persistent on earth with directions coupled to the underlying ice topography. In 1987, Parish and Bromwich used a diagnostic model to depict details of the Antarctic near-surface airflow. A radially outward drainage pattern off the highest elevations of the ice sheets was displayed with wind speeds that generally increase from the high interior to the coast. These winds are often referred to as “katabatic,” with the implication that they are driven by radiational cooling of near-surface air over the sloping ice terrain. It has been shown that the Antarctic orography constrains the low-level wind regime through other forcing mechanisms as well. Dynamics of the lower atmosphere have been investigated increasingly by the use of numerical models since the observational network over the Antarctic remains quite sparse. Real-time numerical weather prediction for the U.S. Antarctic Program has been ongoing since the 2000–01 austral summer season via the Antarctic Mesoscale Prediction System (AMPS). AMPS output, which is based on a polar optimized version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model, is used for a 1-yr period from June 2003 to May 2004 to investigate the mean annual and seasonal airflow patterns over the Antarctic continent to compare with previous streamline depictions. Divergent outflow from atop the continental interior implies that subsidence must exist over the continent and a direct thermal circulation over the high southern latitudes results. Estimates of the north–south mass fluxes are obtained from the mean airflow patterns to infer the influence of the elevated ice sheets on the mean meridional circulation over Antarctica.

Full access
Thomas R. Parish
and
David H. Bromwich

Abstract

Surface pressure decreases of up to 20 hPa occurred over much of the Antarctic continent during a 4-day midwinter period of 1988. The widespread change in the pressure field accompanied intense cyclonic activity to the north of the ice sheet. The equatorward mass transport across the Antarctic coastline resulted in a redistribution of atmospheric pressure that extended to the subtropics of the Southern Hemisphere. Most of the mass flux from Antarctica was the result of low-level processes and appears tied to the katabatic wind circulation. The observed surface pressure decrease over the continent reflects a perturbation of the mean meridional circulation between Antarctica and the subpolar latitudes by synoptic-scale processes. Zonally averaged circulations over Antarctica were examined using output from the European Centre for Medium-Range Weather Forecasts model. Results suggest that only a poorly defined return branch of the meridional circulation exists in the middle and upper troposphere. This southward-directed flow does not compensate for the northward mass transport provided by the katabatic wind outflow in the lower atmosphere. Isallobaric contours over the Antarctic ice sheet roughly match the area of the large-scale drainage catchment associated with katabatic wind transport through the Ross Sea sector. An intense extratropical cyclone was present in the circumpolar oceanic belt to the north of the continent. The horizontal pressure gradient associated with the cyclone prompted enhanced drainage off the high interior plateau. The resulting katabatic flow issued from the continent through a narrow corridor across the Ross Ice Shelf and out over the Southern Ocean.

Full access
Qiu-shi Chen
and
David H. Bromwich

Abstract

In σ coordinates, a variable ϕ e (x, y, σ, t) whose horizontal gradient − ϕ e is equal to the irrotational part of the horizontal pressure gradient force is referred to as an equivalent isobaric geopotential height. Its inner part can be derived from the solution of a Poisson equation with zero Dirichlet boundary value. Because − ϕ(x, y, p, t) is also the irrotational part of the horizontal pressure gradient force in p coordinates, the equivalent geopotential ϕ e in σ coordinates can be used in the same way as the geopotential ϕ(x, y, p, t) used in p coordinates. In the sea level pressure (SLP) analysis over Greenland, small but strong high pressure systems often occur due to extrapolation. These artificial systems can be removed if the equivalent geopotential ϕ e is used in synoptic analysis on a constant σ surface, for example, at σ = 0.995 level. The geostrophic relation between the equivalent geopotential and streamfunction at σ = 0.995 is approximately satisfied.

Because weather systems over the Tibetan Plateau are very difficult to track using routine SLP, 850-hPa, and 700-hPa analyses, equivalent isobaric geopotential analysis in σ coordinates is especially useful over this area. An example of equivalent isobaric geopotential analysis at σ = 0.995 shows that a secondary high separated from a major anticyclone over the Tibetan Plateau when cold air affected the northeastern part of the plateau, but this secondary high is hardly resolved by the SLP analysis. The early stage of a low (or vortex), called a southwest vortex due to its origin in southwest China, over the eastern flank of the Tibetan Plateau is more clearly identified by equivalent isobaric geopotential analysis at σ = 0.825 and 0.735 than by routine isobaric analysis at the 850- and 700-hPa levels. Anomalous high and low systems in the SLP analysis over the Tibetan Plateau due to extrapolation are all removed by equivalent isobaric geopotential analysis at σ = 0.995.

Use of equivalent geopotential ϕ e in the vorticity and divergence equations is presented, and the equivalent geopotential equation is derived. These equations can be used in numerical models, initializations, and other dynamical studies. As an example, it is shown how these equations are used to derive a velocity potential form of the generalized ω equation in σ coordinates. As a check, retrieval of precipitation over Greenland using this ω equation shows that the computed precipitation distributions for 1987 and 1988 are in good agreement with the observed annual accumulation.

Full access
David H. Bromwich
and
Sheng-Hung Wang

Abstract

Many aspects of reanalysis data are of high quality over regions with sufficiently dense data, but the accuracy is uncertain over areas with sparse observations. NCEP–NCAR reanalysis (NNR) and ECMWF 15/40-Yr Re-Analysis (ERA-15 and ERA-40) variables are compared to two independent rawinsonde datasets from the periphery of the Arctic Ocean during the late 1980s and early 1990s: the Coordinated Eastern Arctic Research Experiment (CEAREX) and the Lead Experiment (LeadEx). The study is prompted by J. A. Francis who found that the NNR and ERA-15 upper-level winds are very different from those observed during these two field experiments.

All three reanalyses display large biases in comparisons of the wind components and wind speeds with CEAREX observations, particularly above the 500-hPa level, but exhibit smaller discrepancies with respect to the LeadEx data, generally consistent with the previous findings of J. A. Francis. However, all three reanalyses well capture the wind variability during both experiment periods. For the geopotential height, temperature, and moisture fields, the reanalyses demonstrate close agreement with the CEAREX rawinsonde observations. From comparisons with surrounding fixed rawinsonde stations and examination of the average vertical wind speed shear, it is concluded that the CEAREX upper-level wind speeds (especially above the 500-hPa level) are erroneous and average about half of the actual values. Thus, this evaluation suggests that the three reanalyses perform reliably for tropospheric-state variables from the edge of the Arctic Ocean during the modern satellite era.

Full access