Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: David H. Staelin x
- Refine by Access: All Content x
Abstract
Brightness temperature histograms observed at 50–191 GHz by the Advanced Microwave Sounding Unit (AMSU) on operational NOAA satellites are shown to be consistent with predictions made using a mesoscale NWP model [the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5)] and a radiative transfer model [TBSCAT/F(λ)] for a global set of 122 storms coincident with the AMSU observations. Observable discrepancies between the observed and modeled histograms occurred when 1) snow and graupel mixing ratios were increased more than 15% and 25%, respectively, or their altitudes increased more than ∼25 mb; 2) the density, F(λ), of equivalent Mie-scattering ice spheres increased more than 0.03 g cm−3; and 3) the two-stream ice scattering increased more than ∼1%. Using the same MM5/TBSCAT/F(λ) model, neural networks were developed to retrieve the following from AMSU and geostationary microwave satellites: hydrometeor water paths, 15-min average surface-precipitation rates, and cell-top altitudes, all with 15-km resolution. Simulated AMSU rms precipitation-rate retrieval accuracies ranged from 0.4 to 21 mm h−1 when grouped by octaves of MM5 precipitation rate between 0.1 and 64 mm h−1, and were ∼3.8 mm h−1 for the octave 4–8 mm h−1. AMSU and geostationary microwave (GEM) precipitation-rate retrieval accuracies for random 50–50 mixtures of profiles simulated with either the baseline or a modified-physics model were largely insensitive to changes in model physics that would be clearly evident in AMSU observations if real. This insensitivity of retrieval accuracies to model assumptions implies that MM5/TBSCAT/F(λ) simulations offer a useful test bed for evaluating alternative millimeter-wave satellite designs and methods for retrieval and assimilation, to the extent that surface effects are limited.
Abstract
Brightness temperature histograms observed at 50–191 GHz by the Advanced Microwave Sounding Unit (AMSU) on operational NOAA satellites are shown to be consistent with predictions made using a mesoscale NWP model [the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5)] and a radiative transfer model [TBSCAT/F(λ)] for a global set of 122 storms coincident with the AMSU observations. Observable discrepancies between the observed and modeled histograms occurred when 1) snow and graupel mixing ratios were increased more than 15% and 25%, respectively, or their altitudes increased more than ∼25 mb; 2) the density, F(λ), of equivalent Mie-scattering ice spheres increased more than 0.03 g cm−3; and 3) the two-stream ice scattering increased more than ∼1%. Using the same MM5/TBSCAT/F(λ) model, neural networks were developed to retrieve the following from AMSU and geostationary microwave satellites: hydrometeor water paths, 15-min average surface-precipitation rates, and cell-top altitudes, all with 15-km resolution. Simulated AMSU rms precipitation-rate retrieval accuracies ranged from 0.4 to 21 mm h−1 when grouped by octaves of MM5 precipitation rate between 0.1 and 64 mm h−1, and were ∼3.8 mm h−1 for the octave 4–8 mm h−1. AMSU and geostationary microwave (GEM) precipitation-rate retrieval accuracies for random 50–50 mixtures of profiles simulated with either the baseline or a modified-physics model were largely insensitive to changes in model physics that would be clearly evident in AMSU observations if real. This insensitivity of retrieval accuracies to model assumptions implies that MM5/TBSCAT/F(λ) simulations offer a useful test bed for evaluating alternative millimeter-wave satellite designs and methods for retrieval and assimilation, to the extent that surface effects are limited.
Abstract
A surface-precipitation-rate retrieval algorithm for 13-channel Advanced Microwave Sounding Unit (AMSU) millimeter-wave spectral observations from 23 to 191 GHz is described. It was trained using cloud-resolving fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) simulations over 106 global storms. The resulting retrievals from the U.S. NOAA-15 and NOAA-16 operational weather satellites are compared with average annual accumulations (mm yr−1) for 2006–07 observed by 787 rain gauges globally distributed across 11 surface classifications defined using Advanced Very High Resolution Radiometer infrared spectral images and two classifications defined geographically. Most surface classifications had bias ratios for AMSU/gauges that ranged from 0.88 to 1.59, although higher systematic AMSU overestimates by factors of 2.4, 3.1, and 9 were found for grassland, shrubs over bare ground, and pure bare ground, respectively. The retrievals were then empirically corrected using these observed biases for each surface type. Global images of corrected average annual accumulations of rain, snow, and convective and stratiform precipitation are presented for the period 2002–07. Most results are consistent with Global Precipitation Climatology Project estimates. Evidence based on MM5 simulations suggests that near-surface evaporation of precipitation may have necessitated most of the corrections for undervegetated surfaces. A new correction for radio-frequency interference affecting AMSU is also presented for the same two NOAA satellites and improves retrieval accuracies.
Abstract
A surface-precipitation-rate retrieval algorithm for 13-channel Advanced Microwave Sounding Unit (AMSU) millimeter-wave spectral observations from 23 to 191 GHz is described. It was trained using cloud-resolving fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) simulations over 106 global storms. The resulting retrievals from the U.S. NOAA-15 and NOAA-16 operational weather satellites are compared with average annual accumulations (mm yr−1) for 2006–07 observed by 787 rain gauges globally distributed across 11 surface classifications defined using Advanced Very High Resolution Radiometer infrared spectral images and two classifications defined geographically. Most surface classifications had bias ratios for AMSU/gauges that ranged from 0.88 to 1.59, although higher systematic AMSU overestimates by factors of 2.4, 3.1, and 9 were found for grassland, shrubs over bare ground, and pure bare ground, respectively. The retrievals were then empirically corrected using these observed biases for each surface type. Global images of corrected average annual accumulations of rain, snow, and convective and stratiform precipitation are presented for the period 2002–07. Most results are consistent with Global Precipitation Climatology Project estimates. Evidence based on MM5 simulations suggests that near-surface evaporation of precipitation may have necessitated most of the corrections for undervegetated surfaces. A new correction for radio-frequency interference affecting AMSU is also presented for the same two NOAA satellites and improves retrieval accuracies.
Abstract
The thermal emission spectrum of the atmosphere near the 118 GHz oxygen resonance has been measured from the NASA Convair-990 aircraft as it flew over clear air and storms. The instrument viewed the ground 45° from nadir with a 7.5° beamwidth. Brightness temperatures were measured in six bands 200 MHz wide centered at frequencies 821–1891 MHz from the line at 118.7505 GHz. The double-sideband super-heterodyne receiver had ∼1 K sensitivity for 1 s integration. Comparison of observed clear air brightness temperatures (from 238 mb) with those computed for a coincident dropsonde yielded agreement within 1.4 K; the retrieved temperature profile agreed with the dropsonde with an average magnitude error of 1.4 K. Observations over precipitation yielded brightness perturbations as large as 30 K.
Abstract
The thermal emission spectrum of the atmosphere near the 118 GHz oxygen resonance has been measured from the NASA Convair-990 aircraft as it flew over clear air and storms. The instrument viewed the ground 45° from nadir with a 7.5° beamwidth. Brightness temperatures were measured in six bands 200 MHz wide centered at frequencies 821–1891 MHz from the line at 118.7505 GHz. The double-sideband super-heterodyne receiver had ∼1 K sensitivity for 1 s integration. Comparison of observed clear air brightness temperatures (from 238 mb) with those computed for a coincident dropsonde yielded agreement within 1.4 K; the retrieved temperature profile agreed with the dropsonde with an average magnitude error of 1.4 K. Observations over precipitation yielded brightness perturbations as large as 30 K.
AIRS
Improving Weather Forecasting and Providing New Data on Greenhouse Gases
The Atmospheric Infrared Sounder (AIRS) and its two companion microwave sounders, AMSU and HSB were launched into polar orbit onboard the NASA Aqua Satellite in May 2002. NASA required the sounding system to provide high-quality research data for climate studies and to meet NOAA's requirements for improving operational weather forecasting. The NOAA requirement translated into global retrieval of temperature and humidity profiles with accuracies approaching those of radiosondes. AIRS also provides new measurements of several greenhouse gases, such as CO2, CO, CH4, O3, SO2, and aerosols.
The assimilation of AIRS data into operational weather forecasting has already demonstrated significant improvements in global forecast skill. At NOAA/NCEP, the improvement in the forecast skill achieved at 6 days is equivalent to gaining an extension of forecast capability of six hours. This improvement is quite significant when compared to other forecast improvements over the last decade. In addition to NCEP, ECMWF and the Met Office have also reported positive forecast impacts due AIRS.
AIRS is a hyperspectral sounder with 2,378 infrared channels between 3.7 and 15.4 μm. NOAA/NESDIS routinely distributes AIRS data within 3 hours to NWP centers around the world. The AIRS design represents a breakthrough in infrared space instrumentation with measurement stability and accuracies far surpassing any current research or operational sounder..The results we describe in this paper are “work in progress,” and although significant accomplishments have already been made much more work remains in order to realize the full potential of this suite of instruments.
The Atmospheric Infrared Sounder (AIRS) and its two companion microwave sounders, AMSU and HSB were launched into polar orbit onboard the NASA Aqua Satellite in May 2002. NASA required the sounding system to provide high-quality research data for climate studies and to meet NOAA's requirements for improving operational weather forecasting. The NOAA requirement translated into global retrieval of temperature and humidity profiles with accuracies approaching those of radiosondes. AIRS also provides new measurements of several greenhouse gases, such as CO2, CO, CH4, O3, SO2, and aerosols.
The assimilation of AIRS data into operational weather forecasting has already demonstrated significant improvements in global forecast skill. At NOAA/NCEP, the improvement in the forecast skill achieved at 6 days is equivalent to gaining an extension of forecast capability of six hours. This improvement is quite significant when compared to other forecast improvements over the last decade. In addition to NCEP, ECMWF and the Met Office have also reported positive forecast impacts due AIRS.
AIRS is a hyperspectral sounder with 2,378 infrared channels between 3.7 and 15.4 μm. NOAA/NESDIS routinely distributes AIRS data within 3 hours to NWP centers around the world. The AIRS design represents a breakthrough in infrared space instrumentation with measurement stability and accuracies far surpassing any current research or operational sounder..The results we describe in this paper are “work in progress,” and although significant accomplishments have already been made much more work remains in order to realize the full potential of this suite of instruments.