Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: David K. Adams x
  • All content x
Clear All Modify Search
David K. Adams and Nilton O. Rennó
Full access
David K. Adams and Andrew C. Comrie

The North American monsoon is an important feature of the atmospheric circulation over the continent, with a research literature that dates back almost 100 years. The authors review the wide range of past and current research dealing with the meteorological and climatological aspects of the North American monsoon, highlighting historical development and major research themes. The domain of the North American monsoon is large, extending over much of the western United States from its region of greatest influence in northwestern Mexico. Regarding the debate over moisture source regions and water vapor advection into southwestern North America, there is general agreement that the bulk of monsoon moisture is advected at low levels from the eastern tropical Pacific Ocean and the Gulf of California, while the Gulf of Mexico may contribute some upper-level moisture (although mixing occurs over the Sierra Madre Occidental). Surges of low-level moisture from the Gulf of California are a significant part of intraseasonal monsoon variability, and they are associated with the configuration of upper-level midlatitude troughs and tropical easterly waves at the synoptic scale, as well as the presence of low-level jets, a thermal low, and associated dynamics (including the important effects of local topography) at the mesoscale. Seasonally, the gulf surges and the latitudinal position of the midtropospheric subtropical ridge over southwestern North America appear to be responsible for much spatial and temporal variability in precipitation. Interannual variability of the North American monsoon system is high, but it is not strongly linked to El Niño or other common sources of interannual circulation variability. Recent mesoscale field measurements gathered during the South-West Area Monsoon Project have highlighted the complex nature of the monsoon-related severe storm environment and associated difficulties in modeling and forecasting.

Full access
David K. Adams and Nilton O. Rennó

Abstract

A recent article by J. I. Yano has indicated that there is an inconsistency in the original formulation of the quasi-equilibrium theory of Arakawa and Schubert. He argues that this inconsistency results from a contradiction in the two asymptotic limits of the theory; that is, the fractional area covered by convection, and the ratio of the convective adjustment and large-scale timescales cannot simultaneously go to zero, σ → 0 and τ ADJ/τ LS → 0. Yano cites the heat engine theory proposed by Rennó and Ingersoll as “formally establishing” this contradiction. It is demonstrated in this paper that the quasi-equilibrium framework originally developed by Arakawa and Schubert is perfectly consistent with the heat engine theory for steady-state convection, that is, when the timescale associated with the large-scale forcing τ LS approximates the effective adjustment timescale of the large-scale ensemble of convective clouds τ EFF. Indeed, the quasi-equilibrium framework states that, on the large scale, the atmosphere is in quasi steady state.

Full access
David K. Adams and Enio P. Souza

Abstract

The relationship between atmospheric stability, measured as CAPE, and deep precipitating convection has been widely studied but is not definitive. In the maritime tropics, CAPE and precipitation are usually inversely correlated. In continental convection (i.e., midlatitude and tropical), no consistent relationship has been found. In this study of the semiarid Southwest, a moderate positive correlation exists, approaching 0.6. Correlations based on radiosonde data are found to be sensitive to the parcel level of origin. The strongest correlations are found by modifying the preconvective morning sounding with the maximum reported surface temperature, assuming well-mixed adiabatic layers to the level of free convection with pseudoadiabatic ascent. These results show that the upper bounds on parcel instability correlate best with precipitation. Furthermore, the CAPE–precipitation relationship is argued to depend on the convective regime being considered. The North American monsoon convective regime requires essentially only moisture advection interacting with the strong surface sensible heating over complex topography. Elimination of strong convective inhibition through intense surface sensible heating in the presence of sufficient water vapor leads to the positive CAPE–precipitation relationship on diurnal time scales. These results are discussed in light of contradictory results from other continental and maritime regions, which demonstrate negative correlations.

Full access
Giuseppe Torri, David K. Adams, Huiqun Wang, and Zhiming Kuang

Abstract

Convective processes in the atmosphere over the Maritime Continent and their diurnal cycles have important repercussions for the circulations in the tropics and beyond. In this work, we present a new dataset of precipitable water vapor (PWV) obtained from the Sumatran GPS Array (SuGAr), a dense network of GPS stations principally for examining seismic and tectonic activity along the western coast of Sumatra and several offshore islands. The data provide an opportunity to examine the characteristics of convection over the area in greater detail than before. In particular, our results show that the diurnal cycle of PWV on Sumatra has a single late afternoon peak, while that offshore has both a midday and a nocturnal peak. The SuGAr data are in good agreement with GPS radio occultation data from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission, as well as with imaging spectrometer data from the Ozone Measuring Instrument (OMI). A comparison between SuGAr and the NASA Water Vapor Project (NVAP), however, shows significant differences, most likely due to discrepancies in the temporal and spatial resolutions. To further understand the diurnal cycle contained in the SuGAr data, we explore the impact of the Madden–Julian oscillation (MJO) on the diurnal cycle with the aid of the Weather Research and Forecasting (WRF) Model. Results show that the daily mean and the amplitude of the diurnal cycle appear smaller during the suppressed phase relative to the developing/active MJO phase. Furthermore, the evening/nighttime peaks of PWV offshore appear later during the suppressed phase of the MJO compared to the active phase.

Free access
Kathleen A. Schiro, J. David Neelin, David K. Adams, and Benjamin R. Lintner

Abstract

The relationships between the onset of tropical deep convection, column water vapor (CWV), and other measures of conditional instability are analyzed with 2 yr of data from the DOE Atmospheric Radiation Measurement (ARM) Mobile Facility in Manacapuru, Brazil, as part of the Green Ocean Amazon (GOAmazon) campaign, and with 3.5 yr of CWV derived from global positioning system meteorology at a nearby site in Manaus, Brazil. Important features seen previously in observations over tropical oceans—precipitation conditionally averaged by CWV exhibiting a sharp pickup at high CWV, and the overall shape of the CWV distribution for both precipitating and nonprecipitating points—are also found for this tropical continental region. The relationship between rainfall and CWV reflects the impact of lower-free-tropospheric moisture variability on convection. Specifically, CWV over land, as over ocean, is a proxy for the effect of free-tropospheric moisture on conditional instability as indicated by entraining plume calculations from GOAmazon data. Given sufficient mixing in the lower troposphere, higher CWV generally results in greater plume buoyancies through a deep convective layer. Although sensitivity of buoyancy to other controls in the Amazon is suggested, such as boundary layer and microphysical processes, the CWV dependence is consistent with the observed precipitation onset. Overall, leading aspects of the relationship between CWV and the transition to deep convection in the Amazon have close parallels over tropical oceans. The relationship is robust to averaging on time and space scales appropriate for convective physics but is strongly smoothed for averages greater than 3 h or 2.5°.

Full access
Yolande L. Serra, Angela Rowe, David K. Adams, and George N. Kiladis

Abstract

The 2014–15 Observations and Modeling of the Green Ocean Amazon (GOAmazon) field campaign over the central Amazon near Manaus, Brazil, occurred in coordination with the larger Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud-Resolving Modeling and to the Global Precipitation Measurement (CHUVA) project across Brazil. These programs provide observations of convection over the central Amazon on diurnal to annual time scales. In this study, we address the question of how Kelvin waves, observed in satellite observations of deep cloud cover over the GOAmazon region during the 2014–15 time period, modulate the growth, type, and organization of convection over the central Amazon. The answer to this question has implications for improved predictability of organized systems over the region and representation of convection and its growth on local to synoptic scales in global models. Our results demonstrate that Kelvin waves are strong modulators of synoptic-scale low- to midlevel free-tropospheric moisture, integrated moisture convergence, and surface heat fluxes. These regional modifications of the environment impact the local diurnal cycle of convection, favoring the development of mesoscale convective systems. As a result, localized rainfall is also strongly modulated, with the majority of rainfall in the GOAmazon region occurring during the passage of these systems.

Restricted access
Carlos Manuel Minjarez-Sosa, Christopher L. Castro, Kenneth L. Cummins, Julio Waissmann, and David K. Adams

Abstract

A lightning–precipitation relationship (LPR) is studied at high temporal and spatial resolution (5 min and 5 km). As a proof of concept of these methods, precipitation data are retrieved from the National Severe Storms Laboratory (NSSL) NMQ product for southern Arizona and western Texas while lightning data are provided by the National Lightning Detection Network (NLDN). A spatial- and time-invariant (STI) linear model that considers spatial neighbors and time lags is proposed. A data denial analysis is performed over Midland, Texas (a region with good sensor coverage), with this STI model. The LPR is unchanged and essentially equal, regardless of the domain (denial or complete) used to obtain the STI model coefficients. It is argued that precipitation can be estimated over regions with poor sensor coverage (i.e., southern Arizona) by calibrating the LPR over well-covered domains that are experiencing similar storm conditions. To obtain a lightning-estimated precipitation that dynamically updates the model coefficients in time, a Kalman filter is applied to the STI model. The correlation between the observed and estimated precipitation is statistically significant for both models, but the Kalman filter provides a better precipitation estimation. The best demonstration of this application is a heavy-precipitation, high-frequency lightning event in southern Arizona over a region with poor radar and rain gauge coverage. By calibrating the Kalman filter over a data-covered domain, the lightning-estimated precipitation is considerably greater than that estimated by radar alone. Therefore, for regions where both rain gauge and radar data are compromised, lightning provides a viable alternative for improving QPE.

Full access
David K. Adams, Henrique M. J. Barbosa, and Karen Patricia Gaitán De Los Ríos

Abstract

Deep atmospheric convection, which covers a large range of spatial scales during its evolution, continues to be a challenge for models to replicate, particularly over land in the tropics. Specifically, the shallow-to-deep convective transition and organization on the mesoscale are often not properly represented in coarse-resolution models. High-resolution models offer insights on physical mechanisms responsible for the shallow-to-deep transition. Model verification, however, at both coarse and high resolution requires validation and, hence, observational metrics, which are lacking in the tropics. Here a straightforward metric derived from the Amazon Dense GNSS Meteorological Network (~100 km × 100 km) is presented based on a spatial correlation decay time scale during convective evolution on the mesoscale. For the shallow-to-deep transition, the correlation decay time scale is shown to be around 3.5 h. This novel result provides a much needed metric from the deep tropics for numerical models to replicate.

Full access
David K. Adams, Rui M. S. Fernandes, and Jair M. F. Maia

Abstract

Understanding the complex interactions between water vapor fields and deep convection on the mesoscale requires observational networks with high spatial (kilometers) and temporal (minutes) resolution. In the equatorial tropics, where deep convection dominates the vertical distribution of the most important greenhouse substance—water—these mesoscale networks are nonexistent. Global Navigational Satellite System (GNSS) meteorological networks offer high temporal/spatial resolution precipitable water vapor, but infrastructure exigencies are great. The authors report here on very accurate precipitable water vapor (PWV) values calculated from a GNSS receiver installed on a highly nonideal Amazon rain forest flux tower. Further experiments with a mechanically oscillating platform demonstrate that errors and biases of approximately 1 mm (2%–3% of PWV) can be expected when compared with a stable reference GNSS receiver for two different geodetic grade receivers/antennas and processing methods [GPS-Inferred Positioning System (GIPSY) and GAMIT]. The implication is that stable fixed antennas are unnecessary for accurate calculation of precipitable water vapor regardless of processing techniques or geodetic grade receiver.

Full access