Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: David McInerney x
  • Refine by Access: All Content x
Clear All Modify Search
Johanna Baehr, David McInerney, Klaus Keller, and Jochem Marotzke

Abstract

Three methods are analyzed for the design of ocean observing systems to monitor the meridional overturning circulation (MOC) in the North Atlantic. Specifically, a continuous monitoring array to monitor the MOC at 1000 m at different latitudes is “deployed” into a numerical model. The authors compare array design methods guided by (i) physical intuition (heuristic array design), (ii) sequential optimization, and (iii) global optimization. The global optimization technique can recover the true global solution for the analyzed array design, while gradient-based optimization would be prone to misconverge. Both global optimization and heuristic array design yield considerably improved results over sequential array design. Global optimization always outperforms the heuristic array design in terms of minimizing the root-mean-square error. However, whether the results are physically meaningful is not guaranteed; the apparent success might merely represent a solution in which misfits compensate for each other accidentally. Testing the solution gained from global optimization in an independent dataset can provide crucial information about the solution’s robustness.

Full access
Kevin Schwarzwald, Andrew Poppick, Maria Rugenstein, Jonah Bloch-Johnson, Jiali Wang, David McInerney, and Elisabeth J. Moyer

Abstract

Changes in precipitation variability can have large societal consequences, whether at the short time scales of flash floods or the longer time scales of multiyear droughts. Recent studies have suggested that in future climate projections, precipitation variability rises more steeply than does its mean, leading to concerns about societal impacts. This work evaluates changes in mean precipitation over a broad range of spatial and temporal scales using a range of models from high-resolution regional simulations to millennial-scale global simulations. Results show that changes depend on the scale of aggregation and involve strong regional differences. On local scales that resolve individual rainfall events (hours and tens of kilometers), changes in precipitation distributions are complex and variances rise substantially more than means, as is required given the well-known disproportionate rise in precipitation intensity. On scales that aggregate across many events, distributional changes become simpler and variability changes smaller. At regional scale, future precipitation distributions can be largely reproduced by a simple transformation of present-day precipitation involving a multiplicative shift and a small additive term. The “extra” broadening is negatively correlated with changes in mean precipitation: in strongly “wetting” areas, distributions broaden less than expected from a simple multiplicative mean change; in “drying” areas, distributions narrow less. Precipitation variability changes are therefore of especial concern in the subtropics, which tend to dry under climate change. Outside the tropics, variability changes are similar on time scales from days to decades (i.e., show little frequency dependence). This behavior is highly robust across models, suggesting it may stem from some fundamental constraint.

Restricted access
Stefano Castruccio, David J. McInerney, Michael L. Stein, Feifei Liu Crouch, Robert L. Jacob, and Elisabeth J. Moyer

Abstract

The authors describe a new approach for emulating the output of a fully coupled climate model under arbitrary forcing scenarios that is based on a small set of precomputed runs from the model. Temperature and precipitation are expressed as simple functions of the past trajectory of atmospheric CO2 concentrations, and a statistical model is fit using a limited set of training runs. The approach is demonstrated to be a useful and computationally efficient alternative to pattern scaling and captures the nonlinear evolution of spatial patterns of climate anomalies inherent in transient climates. The approach does as well as pattern scaling in all circumstances and substantially better in many; it is not computationally demanding; and, once the statistical model is fit, it produces emulated climate output effectively instantaneously. It may therefore find wide application in climate impacts assessments and other policy analyses requiring rapid climate projections.

Full access