Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: David P. Schneider x
  • All content x
Clear All Modify Search
David P. Schneider and David B. Reusch

Abstract

This study examines the biases, intermodel spread, and intermodel range of surface air temperature (SAT) across the Antarctic ice sheet and Southern Ocean in 26 structurally different climate models. Over the ocean (40°–60°S), an ensemble-mean warm bias peaks in late austral summer concurrently with the peak in the intermodel range of SAT. This warm bias lags a spring–summer positive bias in net surface radiation due to weak shortwave cloud forcing and is gradually reduced during autumn and winter. For the ice sheet, inconsistencies among reanalyses and observational datasets give low confidence in the ensemble-mean bias of SAT, but a small summer warm bias is suggested in comparison with nonreanalysis SAT data. The ensemble mean hides a large intermodel range of SAT, which peaks during the summer insolation maximum. In summer on the ice sheet, the SAT intermodel spread is largely associated with the surface albedo. In winter, models universally exhibit a too-strong deficit in net surface radiation related to the downward longwave radiation, implying that the lower atmosphere is too stable. This radiation deficit is balanced by the transfer of sensible heat toward the surface (which largely explains the intermodel spread in SAT) and by a subsurface heat flux. The winter bias in downward longwave radiation is due to the longwave cloud radiative effect, which the ensemble mean underestimates by a factor of 2. The implications of these results for improving climate simulations over Antarctica and the Southern Ocean are discussed.

Full access
David P. Schneider, Clara Deser, and Tingting Fan

Abstract

Westerly wind trends at 850 hPa over the Southern Ocean during 1979–2011 exhibit strong regional and seasonal asymmetries. On an annual basis, trends in the Pacific sector (40°–60°S, 70°–160°W) are 3 times larger than zonal-mean trends related to the increase in the southern annular mode (SAM). Seasonally, the SAM-related trend is largest in austral summer, and many studies have linked this trend with stratospheric ozone depletion. In contrast, the Pacific sector trends are largest in austral autumn. It is proposed that these asymmetries can be explained by a combination of tropical teleconnections and polar ozone depletion. Six ensembles of transient atmospheric model experiments, each forced with different combinations of time-dependent radiative forcings and SSTs, support this idea. In summer, the model simulates a positive SAM-like pattern, to which ozone depletion and tropical SSTs (which contain signatures of internal variability and warming from greenhouse gasses) contribute. In autumn, the ensemble-mean response consists of stronger westerlies over the Pacific sector, explained by a Rossby wave originating from the central equatorial Pacific. While these responses resemble observations, attribution is complicated by intrinsic atmospheric variability. In the experiments forced only with tropical SSTs, individual ensemble members exhibit wind trend patterns that mimic the forced response to ozone. When the analysis presented herein is applied to 1960–2000, the primary period of ozone loss, ozone depletion largely explains the model’s SAM-like zonal wind trend. The time-varying importance of these different drivers has implications for relating the historical experiments of free-running, coupled models to observations.

Full access
David P. Schneider, Yuko Okumura, and Clara Deser

Abstract

This study reviews the mechanisms associated with Antarctic–tropical climate linkages and presents new analyses of the seasonality and spatial patterns of tropical climate signals in the Antarctic for the late 1950s to the present. Tropical climate signals are primarily communicated to the Antarctic via the Pacific–South America (PSA) pattern and the southern annular mode (SAM). The impacts of these circulation patterns and their tropical linkages are evident in regressions of seasonally stratified Antarctic station temperature data and annually resolved ice core records on global fields of sea surface temperature, sea level pressure, and precipitation. Temperature and ice core anomalies in the Antarctic Peninsula region and adjoining areas of West Antarctica are significantly impacted by the PSA, interpreted as a Rossby wave train driven by anomalous tropical deep convection during ENSO events. This pattern is most evident in the austral spring, consistent with recent studies, suggesting that atmospheric conditions for Rossby wave propagation are most favorable during this season. During austral summer at the peak of the ENSO cycle, temperature anomalies at East Antarctic coastal stations exhibit significant correlations with tropical Pacific anomalies. This linkage reflects the influence of anomalous tropical heating on the position and strength of the subtropical jets and is consistent with changes in eddy momentum fluxes that alter the mean meridional circulation associated with the SAM. Of the ice cores that exhibit tropical linkages, most tend to be associated with the PSA teleconnection. The implications of the study’s findings for understanding Antarctic climate variability and climate change from seasonal to decadal time scales are also discussed.

Full access
David P. Schneider, Eric J. Steig, and Josefino C. Comiso

Abstract

Recent Antarctic climate variability on month-to-month to interannual time scales is assessed through joint analysis of surface temperatures from satellite thermal infrared observations (T IR) and passive microwave brightness temperatures (T B). Although T IR data are limited to clear-sky conditions and T B data are a product of the temperature and emissivity of the upper ∼1 m of snow, the two datasets share significant covariance. This covariance is largely explained by three empirical modes, which illustrate the spatial and temporal variability of Antarctic surface temperatures. The T B variations are damped compared to T IR variations, as determined by the period of the temperature forcing and the microwave emission depth; however, microwave emissivity does not vary significantly in time. Comparison of the temperature modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies demonstrates that Antarctic temperature anomalies are predominantly controlled by the principal patterns of SH atmospheric circulation. The leading surface temperature mode strongly correlates with the Southern Annular Mode (SAM) in geopotential height. The second temperature mode reflects the combined influences of the zonal wavenumber-3 and Pacific–South American (PSA) patterns in 500-hPa height on month-to-month time scales. ENSO variability projects onto this mode on interannual time scales, but is not by itself a good predictor of Antarctic temperature anomalies. The third temperature mode explains winter warming trends, which may be caused by blocking events, over a large region of the East Antarctic plateau. These results help to place recent climate changes in the context of Antarctica's background climate variability and will aid in the interpretation of ice core paleoclimate records.

Full access
Elena Yulaeva, Niklas Schneider, David W. Pierce, and Tim P. Barnett

Abstract

Potential predictability of low-frequency climate changes in the North Pacific depends on two main factors. The first is the sensitivity of the atmosphere to ocean-induced anomalies at the sea surface in midlatitudes. The second is the degree of teleconnectivity of the tropical low-frequency variability to midlatitudes. In contrast to the traditional approach of prescribing sea surface temperature (SST) anomalies, the response of a coupled atmospheric general circulation (CCM3)–mixed layer ocean model to oceanic perturbations of the mixed layer heat budget is examined. Since positive oceanic heat flux perturbations partially increase SST anomalies (locally), and partially are vented directly into the atmosphere, expressing boundary forcing on the atmosphere by prescribing upper-ocean heat flux anomalies allows for better understanding of the physical mechanism of low-frequency variability in midlatitudes. In the framework of this approach SST is considered to be a part of the adjustment of the coupled system rather than an external forcing. Wintertime model responses to mixed layer heat budget perturbations of up to 40 W m−2 in the Kuroshio extension region and in the tropical central Pacific show statistically significant anomalies of 500-mb geopotential height (Z500) in the midlatitudes. The response to the tropical forcing resembles the well-known Pacific–North American pattern, one of the leading modes of internal variability of the control run. The amplitude of the Z500 geopotential height reaches 40 m in the region of the Aleutian low. The response of Z500 to forcing in the Kuroshio Current extension region resembles the mixture of western Pacific and Pacific–North American patterns, the first two modes of the internal variability of the atmosphere. In midlatitudes this response is equivalent barotropic, with the maximum of 80 m at (60°N, 160°W). Examination of the vorticity and thermodynamic budgets reveals the crucial role of submonthly transient eddies in maintaining the anomalous circulation in the free atmosphere.

At the surface the response manifests itself in changes of surface temperature and the wind stress. The amplitude of response to the tropical forcing in the SST field at the Kuroshio Current extension region is up to 0.3 K (in absolute value) that is 2 times weaker than SST anomalies induced by midlatitude forcing of the same amplitude. In addition, the spatial structures of the responses in the SST field over the North Pacific are different. While tropical forcing induces SST anomalies in the central North Pacific, the midlatitude forcing causes SST anomalies off the east coast of Japan, in the Kuroshio–Oyashio extension region. Overall, remote tropical forcing appears to be effective in driving anomalies over the central North Pacific. This signal can be transported westward by the oceanic processes. Thus tropical forcing anomalies can serve as a precursor of the changes over the western North Pacific.

In the case of midlatitude forcing, the response in the wind stress field alters Ekman pumping in such a way that the expected change of the oceanic gyre, as measured by the Sverdrup transport, would counteract the prescribed forcing in the Kuroshio extension region, thus causing a negative feedback. This response is consistent with the hypothesis that quasi-oscillatory decadal climate variations in the North Pacific result from midlatitude ocean–atmosphere interaction.

Full access
Laura Landrum, Marika M. Holland, David P. Schneider, and Elizabeth Hunke

Abstract

A preindustrial control run and an ensemble of twentieth-century integrations of the Community Climate System Model, version 4 (CCSM4), are evaluated for Antarctic sea ice climatology, modes of variability, trends, and covariance with related physical variables such as surface temperature and sea level pressure. Compared to observations, the mean ice cover is too extensive in all months. This is in part related to excessively strong westerly winds over ~50°–60°S, which drive a large equatorward meridional ice transport and enhanced ice growth near the continent and also connected with a cold bias in the Southern Ocean. In spite of these biases in the climatology, the model’s sea ice variability compares well to observations. The leading mode of austral winter sea ice concentration exhibits a dipole structure with anomalies of opposite sign in the Atlantic and Pacific sectors. Both the El Niño–Southern Oscillation and the southern annular mode (SAM) project onto this mode. In twentieth-century integrations, Antarctic sea ice area exhibits significant decreasing annual trends in all six ensemble members from 1950 to 2005, in apparent contrast to observations that suggest a modest ice area increase since 1979. Two ensemble members show insignificant changes when restricted to 1979–2005. The ensemble mean shows a significant increase in the austral summer SAM index over 1960–2005 and 1979–2005 that compares well with the observed SAM trend. However, Antarctic warming and sea ice loss in the model are closely connected to each other and not to the trend in the SAM.

Full access
Edwin K. Schneider, Ben P. Kirtman, David G. DeWitt, Anthony Rosati, Link Ji, and Joseph J. Tribbia

Abstract

Results are described from a series of 40 retrospective forecasts of tropical Pacific SST, starting 1 January and 1 July 1980–99, performed with several coupled ocean–atmosphere general circulation models sharing the same ocean model—the Modular Ocean Model version 3 (MOM3) OGCM—and the same initial conditions. The atmospheric components of the coupled models were the Center for Ocean–Land–Atmosphere Studies (COLA), ECHAM, and Community Climate Model version 3 (CCM3) models at T42 horizontal resolution, and no empirical corrections were applied to the coupling. Additionally, the retrospective forecasts using the COLA and ECHAM atmospheric models were carried out with two resolutions of the OGCM. The high-resolution version of the OGCM had 1° horizontal resolution (1/3° meridional resolution near the equator) and 40 levels in the vertical, while the lower-resolution version had 1.5° horizontal resolution (1/2° meridional resolution near the equator) and 25 levels. The initial states were taken from an ocean data assimilation performed by the Geophysical Fluid Dynamics Laboratory (GFDL) using the high-resolution OGCM. Initial conditions for the lower-resolution retrospective forecasts were obtained by interpolation from the GFDL ocean data assimilation.

The systematic errors of the mean evolution in the coupled models depend strongly on the atmospheric model, with the COLA versions having a warm bias in tropical Pacific SST, the CCM3 version a cold bias, and the ECHAM versions a smaller cold bias. Each of the models exhibits similar levels of skill, although some statistically significant differences are identified. The models have better retrospective forecast performance from the 1 July initial conditions, suggesting a spring prediction barrier. A consensus retrospective forecast produced by taking the ensemble average of the retrospective forecasts from all of the models is generally superior to any of the individual retrospective forecasts. One reason that averaging across models appears to be successful is that the averaging reduces the effects of systematic errors in the structure of the ENSO variability of the different models. The effect of reducing noise by averaging ensembles of forecasts made with the same model is compared to the effects from multimodel ensembling for a subset of the cases; however, the sample size is not large enough to clearly distinguish between the multimodel consensus and the single-model ensembles.

There are obvious problems with the retrospective forecasts that can be connected to the various systematic errors of the coupled models in simulation mode, and which are ultimately due to model error (errors in the physical parameterizations and numerical truncation). These errors lead to initial shock and a “spring variability barrier” that degrade the retrospective forecasts.

Full access
Gerald A. Meehl, Julie M. Arblaster, David M. Lawrence, Anji Seth, Edwin K. Schneider, Ben P. Kirtman, and Dughong Min

Abstract

Simulations of regional monsoon regimes, including the Indian, Australian, West African, South American, and North American monsoons, are described for the T85 version of the Community Climate System Model version 3 (CCSM3) and compared to observations and Atmospheric Model Intercomparison Project (AMIP)-type SST-forced simulations with the Community Atmospheric Model version 3 (CAM3) at T42 and T85. There are notable improvements in the regional aspects of the precipitation simulations in going to the higher-resolution T85 compared to T42 where topography is important (e.g., Ethiopian Highlands, South American Andes, and Tibetan Plateau). For the T85 coupled version of CCSM3, systematic SST errors are associated with regional precipitation errors in the monsoon regimes of South America and West Africa, though some aspects of the monsoon simulations, particularly in Asia, improve in the coupled model compared to the SST-forced simulations. There is very little realistic intraseasonal monsoon variability in the CCSM3 consistent with earlier versions of the model. Teleconnections to the tropical Pacific are well simulated for the South Asian monsoon.

Full access
Edwin K. Schneider, Bohua Huang, Zhengxin Zhu, David G. DeWitt, James L. Kinter III, Ben P. Kirtman, and J. Shukla

Abstract

A scheme for making seasonal to interannual predictions of El Niño–Southern Oscillation with a coupled atmosphere–ocean general circulation model that incorporates subsurface ocean measurements in the initial conditions is described. Anomaly initial conditions are used in order to reduce initial shock and climate drift. The ocean component of the prediction model has a nearly global domain, and the coupled model does not employ anomaly coupling or empirical statistical corrections.

Initial conditions for the ocean were obtained from a near-global ocean analysis produced by an ocean data assimilation system. The assimilation system uses a variationally formulated optimal interpolation method to analyze oceanic fields from temperature observations and a first-guess field provided by integrating a global ocean general circulation model. The period of the analysis was 1986 through 1992.

The anomaly initial conditions for the ocean were generated by adding the anomalies of the assimilated fields from the assimilation climatology to the coupled model climatology. A series of 28 1-yr hindcast experiments, four each year for the years 1986–1992, was carried out to test the scheme. The hindcasts show considerable skill in the equatorial Pacific.

Full access
Lans P. Rothfusz, Russell Schneider, David Novak, Kimberly Klockow-McClain, Alan E. Gerard, Chris Karstens, Gregory J. Stumpf, and Travis M. Smith

Abstract

Recommendations by the National Research Council (NRC), the National Institute of Standards and Technology (NIST), and Weather-Ready Nation workshop participants have encouraged the National Oceanic and Atmospheric Administration (NOAA) and the broader weather enterprise to explore and expand the use of probabilistic information to convey weather forecast uncertainty. Forecasting a Continuum of Environmental Threats (FACETs) is a concept being explored by NOAA to address those recommendations and also potentially shift the National Weather Service (NWS) from (primarily) teletype-era, deterministic watch–warning products to high-resolution, probabilistic hazard information (PHI) spanning periods from days (and longer) to within minutes of high-impact weather and water events. FACETs simultaneously i) considers a reinvention of the NWS hazard forecasting and communication paradigm so as to deliver multiscale, user-specific probabilistic guidance from numerical weather prediction ensembles and ii) provides a comprehensive framework to organize the physical, social, and behavioral sciences, the technology, and the practices needed to achieve that reinvention. The first applications of FACETs have focused on thunderstorm phenomena, but the FACETs concept is envisioned to extend to the attributes of any environmental hazards that can be described probabilistically (e.g., winter, tropical, and aviation weather). This paper introduces the FACETs vision, the motivation for its creation, the research and development under way to explore that vision, its relevance to operational forecasting and society, and possible strategies for implementation.

Open access