Search Results
You are looking at 1 - 10 of 10 items for
- Author or Editor: David R. Ryglicki x
- Refine by Access: All Content x
Abstract
The interactions of the barotropic instability found at low levels in tropical cyclones and a shear forcing are presented. Previous works have indicated that at low levels of tropical cyclones, the inner edge of the core may be barotropically unstable and thereby able to support counterpropagating vortex Rossby wave interactions. It has also been demonstrated that hurricanes and other barotropic vortices possess innate, dry abilities to maintain themselves when under the duress of vertical wind shear. This work will address how these two separate processes interact with each other.
In this study, the barotropic ring is given additional vorticity in the outer regions to mimic observations more closely. This allows for the outward propagation of energy and simultaneous reduction of the radius of maximum wind. When this vortex is sheared, it is found that the shear forcing, which acts as a de facto wavenumber-1 forcing, does not noticeably alter the growth of the most unstable mode, wavenumber 3. The tilt precession of the vortex is altered greatly, as the tilt becomes both larger and slower. Palinstrophy and deformation analysis indicates that overall peak mixing is also reduced, owing to changes in the axisymmetrization process. Energetics analyses show that the radial component of the shear forcing acts to generate eddies while the tangential component of the shear tends to destroy eddies. The calculations are carried out a second time with another center-finding method, which shows the tilt to be much smaller and more variable while imparting a large wavenumber-1 signal in Fourier analyses.
Abstract
The interactions of the barotropic instability found at low levels in tropical cyclones and a shear forcing are presented. Previous works have indicated that at low levels of tropical cyclones, the inner edge of the core may be barotropically unstable and thereby able to support counterpropagating vortex Rossby wave interactions. It has also been demonstrated that hurricanes and other barotropic vortices possess innate, dry abilities to maintain themselves when under the duress of vertical wind shear. This work will address how these two separate processes interact with each other.
In this study, the barotropic ring is given additional vorticity in the outer regions to mimic observations more closely. This allows for the outward propagation of energy and simultaneous reduction of the radius of maximum wind. When this vortex is sheared, it is found that the shear forcing, which acts as a de facto wavenumber-1 forcing, does not noticeably alter the growth of the most unstable mode, wavenumber 3. The tilt precession of the vortex is altered greatly, as the tilt becomes both larger and slower. Palinstrophy and deformation analysis indicates that overall peak mixing is also reduced, owing to changes in the axisymmetrization process. Energetics analyses show that the radial component of the shear forcing acts to generate eddies while the tangential component of the shear tends to destroy eddies. The calculations are carried out a second time with another center-finding method, which shows the tilt to be much smaller and more variable while imparting a large wavenumber-1 signal in Fourier analyses.
Abstract
A deeper analysis of possible errors and inconsistencies in the analysis of vortex asymmetries owing to the placement of centers of tropical cyclones (TCs) in mesoscale models is presented. Previous works have established that components of the 2D and 3D structure of these TCs—primarily radial wind and vertical tilt—can vary greatly depending on how the center of a model TC is defined. This work will seek to expand the previous research on this topic, but only for the 2D structure. To be specific, this work will present how low-wavenumber azimuthal Fourier analyses can vary with center displacement using idealized, parametric TC-like vortices. It is shown that the errors associated with aliasing the mean are sensitive primarily to the difference between the peak of vorticity inside the radius of maximum winds and the average vorticity inside the core. Tangential wind and vorticity aliasing occur primarily in the core; radial wind aliasing spans the whole of the vortex. It is also shown that, when adding low-wavenumber asymmetries, the aliasing is dependent on the placement of the center relative to the location of the asymmetries on the vortex. It is also shown that the primary concern for 2D analysis when calculating the center of a TC is correctly resolving azimuthal wavenumber 0 tangential wind, because errors here will alias onto all higher wavenumbers, the specific structures of which are dependent on the structure of the mean vortex itself.
Abstract
A deeper analysis of possible errors and inconsistencies in the analysis of vortex asymmetries owing to the placement of centers of tropical cyclones (TCs) in mesoscale models is presented. Previous works have established that components of the 2D and 3D structure of these TCs—primarily radial wind and vertical tilt—can vary greatly depending on how the center of a model TC is defined. This work will seek to expand the previous research on this topic, but only for the 2D structure. To be specific, this work will present how low-wavenumber azimuthal Fourier analyses can vary with center displacement using idealized, parametric TC-like vortices. It is shown that the errors associated with aliasing the mean are sensitive primarily to the difference between the peak of vorticity inside the radius of maximum winds and the average vorticity inside the core. Tangential wind and vorticity aliasing occur primarily in the core; radial wind aliasing spans the whole of the vortex. It is also shown that, when adding low-wavenumber asymmetries, the aliasing is dependent on the placement of the center relative to the location of the asymmetries on the vortex. It is also shown that the primary concern for 2D analysis when calculating the center of a TC is correctly resolving azimuthal wavenumber 0 tangential wind, because errors here will alias onto all higher wavenumbers, the specific structures of which are dependent on the structure of the mean vortex itself.
Abstract
A variety of tropical-cyclone (TC) center-finding methods aggregated from previous works of mesoscale modeling and operational analysis are compared. The previous methods used can be divided into three classes: local extreme, weighted grid point, and minimization of azimuthal variance. To analyze these methods, four representative separate TC forecasts from three operational models—the Coupled Ocean–Atmosphere Mesoscale Prediction System Tropical Cyclone version, a Geophysical Fluid Dynamics Laboratory model, and the Hurricane Weather Research and Forecasting Model—are examined. It is found that for this dataset the spread of the derived TC centers is fairly small between 1000 and 600 hPa but begins to increase rapidly at higher levels. All models exhibit increased center spread at upper levels when the TCs’ strengths fall below approximately hurricane strength. On a given pressure level, tangential wind differences calculated from different centers are generally small and localized, whereas radial wind differences are often much larger in both space and relative magnitude. Center-finding techniques that use mass fields to calculate centers exhibit the smallest vertical tilts for hurricane-strength TCs. Conversely, potential vorticity centroids with large weighting areas produce the largest tilts. Given the potential sensitivity of center determination and implied tilt for various other measures of TC structure (radius of maximum winds), these results may have large repercussions on both past and future analyses.
Abstract
A variety of tropical-cyclone (TC) center-finding methods aggregated from previous works of mesoscale modeling and operational analysis are compared. The previous methods used can be divided into three classes: local extreme, weighted grid point, and minimization of azimuthal variance. To analyze these methods, four representative separate TC forecasts from three operational models—the Coupled Ocean–Atmosphere Mesoscale Prediction System Tropical Cyclone version, a Geophysical Fluid Dynamics Laboratory model, and the Hurricane Weather Research and Forecasting Model—are examined. It is found that for this dataset the spread of the derived TC centers is fairly small between 1000 and 600 hPa but begins to increase rapidly at higher levels. All models exhibit increased center spread at upper levels when the TCs’ strengths fall below approximately hurricane strength. On a given pressure level, tangential wind differences calculated from different centers are generally small and localized, whereas radial wind differences are often much larger in both space and relative magnitude. Center-finding techniques that use mass fields to calculate centers exhibit the smallest vertical tilts for hurricane-strength TCs. Conversely, potential vorticity centroids with large weighting areas produce the largest tilts. Given the potential sensitivity of center determination and implied tilt for various other measures of TC structure (radius of maximum winds), these results may have large repercussions on both past and future analyses.
Abstract
The interactions between the outflow of a tropical cyclone (TC) and its background flow are explored using a hierarchy of models of varying complexity. Previous studies have established that, for a select class of TCs that undergo rapid intensification in moderate values of vertical wind shear, the upper-level outflow of the TC can block and reroute the environmental winds, thus reducing the shear and permitting the TC to align and subsequently to intensify. We identify in satellite imagery and reanalysis datasets the presence of tilt nutations and evidence of upwind blocking by the divergent wind field, which are critical components of atypical rapid intensification. We then demonstrate how an analytical expression and a shallow water model can be used to explain some of the structure of upper-level outflow. The analytical expression shows that the dynamic high inside the outflow front is a superposition of two pressure anomalies caused by the outflow’s deceleration by the environment and by the environment’s deceleration by the outflow. The shallow water model illustrates that the blocking is almost entirely dependent upon the divergent component of the wind. Then, using a divergent kinetic energy budget analysis, we demonstrate that, in a full-physics TC, upper-level divergent flow generation occurs in two phases: pressure driven and then momentum driven. The change happens when the tilt precession reaches left of shear. When this change occurs, the outflow blocking extends upshear. We discuss these results with regard to prior severe weather studies.
Abstract
The interactions between the outflow of a tropical cyclone (TC) and its background flow are explored using a hierarchy of models of varying complexity. Previous studies have established that, for a select class of TCs that undergo rapid intensification in moderate values of vertical wind shear, the upper-level outflow of the TC can block and reroute the environmental winds, thus reducing the shear and permitting the TC to align and subsequently to intensify. We identify in satellite imagery and reanalysis datasets the presence of tilt nutations and evidence of upwind blocking by the divergent wind field, which are critical components of atypical rapid intensification. We then demonstrate how an analytical expression and a shallow water model can be used to explain some of the structure of upper-level outflow. The analytical expression shows that the dynamic high inside the outflow front is a superposition of two pressure anomalies caused by the outflow’s deceleration by the environment and by the environment’s deceleration by the outflow. The shallow water model illustrates that the blocking is almost entirely dependent upon the divergent component of the wind. Then, using a divergent kinetic energy budget analysis, we demonstrate that, in a full-physics TC, upper-level divergent flow generation occurs in two phases: pressure driven and then momentum driven. The change happens when the tilt precession reaches left of shear. When this change occurs, the outflow blocking extends upshear. We discuss these results with regard to prior severe weather studies.
Abstract
A satellite-based investigation is performed of a class of tropical cyclones (TCs) that unexpectedly undergo rapid intensification (RI) in moderate vertical wind shear between 5 and 10 m s−1 calculated as 200–850-hPa shear. This study makes use of both infrared (IR; 11 μm) and water vapor (WV; 6.5 μm) geostationary satellite data, the Statistical Hurricane Prediction Intensity System (SHIPS), and model reanalyses to highlight commonalities of the six TCs. The commonalities serve as predictive guides for forecasters and common features that can be used to constrain and verify idealized modeling studies. Each of the TCs exhibits a convective cloud structure that is identified as a tilt-modulated convective asymmetry (TCA). These TCAs share similar shapes, upshear-relative positions, and IR cloud-top temperatures (below −70°C). They pulse over the core of the TC with a periodicity of between 4 and 8 h. Using WV satellite imagery, two additional features identified are asymmetric warming/drying upshear of the TC relative to downshear, as well as radially thin arc-shaped clouds on the upshear side. The WV brightness temperatures of these arcs are between −40° and −60°C. All of the TCs are sheared by upper-level anticyclones, which limits the strongest environmental winds to near the tropopause.
Abstract
A satellite-based investigation is performed of a class of tropical cyclones (TCs) that unexpectedly undergo rapid intensification (RI) in moderate vertical wind shear between 5 and 10 m s−1 calculated as 200–850-hPa shear. This study makes use of both infrared (IR; 11 μm) and water vapor (WV; 6.5 μm) geostationary satellite data, the Statistical Hurricane Prediction Intensity System (SHIPS), and model reanalyses to highlight commonalities of the six TCs. The commonalities serve as predictive guides for forecasters and common features that can be used to constrain and verify idealized modeling studies. Each of the TCs exhibits a convective cloud structure that is identified as a tilt-modulated convective asymmetry (TCA). These TCAs share similar shapes, upshear-relative positions, and IR cloud-top temperatures (below −70°C). They pulse over the core of the TC with a periodicity of between 4 and 8 h. Using WV satellite imagery, two additional features identified are asymmetric warming/drying upshear of the TC relative to downshear, as well as radially thin arc-shaped clouds on the upshear side. The WV brightness temperatures of these arcs are between −40° and −60°C. All of the TCs are sheared by upper-level anticyclones, which limits the strongest environmental winds to near the tropopause.
Abstract
We investigate a class of tropical cyclones (TCs) that undergo rapid intensification (RI) in moderate vertical wind shear through analysis of a series of idealized model simulations. Two key findings derived from observational analysis are that the average 200–850-hPa shear value is 7.5 m s−1 and that the TCs displayed coherent cloud structures, deemed tilt-modulated convective asymmetries (TCA), which feature pulses of deep convection with periods of between 4 and 8 h. Additionally, all of the TCs are embedded in an environment that is characterized by shear associated with anticyclones, a factor that limits depth of the strongest environmental winds in the vertical. The idealized TC develops in the presence of relatively shallow environmental wind shear of an anticyclone. An analysis of the TC tilt in the vertical demonstrates that the source of the observed 4–8-h periodicity of the TCAs can be explained by smaller-scale nutations of the tilt on the longer, slower upshear precession. When the environmental wind shear occurs over a deeper layer similar to that of a trough, the TC does not develop. The TCAs are characterized as collections of updrafts that are buoyant throughout the depth of the TC since they rise into a cold anomaly caused by the tilting vortex. At 90 h into the simulation, RI occurs, and the tilt nutations (and hence the TCAs) cease to occur.
Abstract
We investigate a class of tropical cyclones (TCs) that undergo rapid intensification (RI) in moderate vertical wind shear through analysis of a series of idealized model simulations. Two key findings derived from observational analysis are that the average 200–850-hPa shear value is 7.5 m s−1 and that the TCs displayed coherent cloud structures, deemed tilt-modulated convective asymmetries (TCA), which feature pulses of deep convection with periods of between 4 and 8 h. Additionally, all of the TCs are embedded in an environment that is characterized by shear associated with anticyclones, a factor that limits depth of the strongest environmental winds in the vertical. The idealized TC develops in the presence of relatively shallow environmental wind shear of an anticyclone. An analysis of the TC tilt in the vertical demonstrates that the source of the observed 4–8-h periodicity of the TCAs can be explained by smaller-scale nutations of the tilt on the longer, slower upshear precession. When the environmental wind shear occurs over a deeper layer similar to that of a trough, the TC does not develop. The TCAs are characterized as collections of updrafts that are buoyant throughout the depth of the TC since they rise into a cold anomaly caused by the tilting vortex. At 90 h into the simulation, RI occurs, and the tilt nutations (and hence the TCAs) cease to occur.
Abstract
Multiple observation and analysis datasets are used to demonstrate two key features of the atypical rapid intensification (ARI) process that occurred in Atlantic Hurricane Dorian (2019): 1) precession and nutations of the vortex tilt and 2) blocking of the impinging upper-level environmental flow by the outflow. As Dorian came under the influence of an upper-level anticyclone, traditional methods of estimating vertical wind shear all indicated relatively low values were acting on the storm; however, high-spatiotemporal-resolution atmospheric motion vectors (AMVs) indicated that the environmental flow at upper levels was actually impinging on the vortex core, resulting in a vertical tilt. We employ a novel ensemble of centers of individual swaths of dual-Doppler radar data from WP-3D aircraft to characterize the precession and wobble of the vortex tilt. This tilting and wobbling preceded a sequence of outflow surges that acted to repel the impinging environmental flow, thereby reducing the shear and permitting ARI. We then apply prior methodology on satellite imagery for distinguishing ARI features. Finally, we use the AMV dataset to experiment with different shear calculations and show that the upper-level cross-vortex flow approaches zero. We discuss the implication of these results with regard to prior works on ARI and intensification in shear.
Abstract
Multiple observation and analysis datasets are used to demonstrate two key features of the atypical rapid intensification (ARI) process that occurred in Atlantic Hurricane Dorian (2019): 1) precession and nutations of the vortex tilt and 2) blocking of the impinging upper-level environmental flow by the outflow. As Dorian came under the influence of an upper-level anticyclone, traditional methods of estimating vertical wind shear all indicated relatively low values were acting on the storm; however, high-spatiotemporal-resolution atmospheric motion vectors (AMVs) indicated that the environmental flow at upper levels was actually impinging on the vortex core, resulting in a vertical tilt. We employ a novel ensemble of centers of individual swaths of dual-Doppler radar data from WP-3D aircraft to characterize the precession and wobble of the vortex tilt. This tilting and wobbling preceded a sequence of outflow surges that acted to repel the impinging environmental flow, thereby reducing the shear and permitting ARI. We then apply prior methodology on satellite imagery for distinguishing ARI features. Finally, we use the AMV dataset to experiment with different shear calculations and show that the upper-level cross-vortex flow approaches zero. We discuss the implication of these results with regard to prior works on ARI and intensification in shear.
Abstract
Interactions between the upper-level outflow of a sheared, rapidly intensifying tropical cyclone (TC) and the background environmental flow in an idealized model are presented. The most important finding is that the divergent outflow from convection localized by the tilt of the vortex serves to divert the background environmental flow around the TC, thus reducing the local vertical wind shear. We show that this effect can be understood from basic theoretical arguments related to Bernoulli flow around an obstacle. In the simulation discussed, the environmental flow diversion by the outflow is limited to 2 km below the tropopause in the 12–14-km (250–150 hPa) layer. Synthetic water vapor satellite imagery confirms the presence of upshear arcs in the cloud field, matching satellite observations. These arcs, which exist in the same layer as the outflow, are caused by slow-moving wave features and serve as visual markers of the outflow–environment interface. The blocking effect where the outflow and the environmental winds meet creates a dynamic high pressure whose pressure gradient extends nearly 1000 km upwind, thus causing the environmental winds to slow down, to converge, and to sink. We discuss these results with respect to the first part of this three-part study, and apply them to another atypical rapid intensification hurricane: Matthew (2016).
Abstract
Interactions between the upper-level outflow of a sheared, rapidly intensifying tropical cyclone (TC) and the background environmental flow in an idealized model are presented. The most important finding is that the divergent outflow from convection localized by the tilt of the vortex serves to divert the background environmental flow around the TC, thus reducing the local vertical wind shear. We show that this effect can be understood from basic theoretical arguments related to Bernoulli flow around an obstacle. In the simulation discussed, the environmental flow diversion by the outflow is limited to 2 km below the tropopause in the 12–14-km (250–150 hPa) layer. Synthetic water vapor satellite imagery confirms the presence of upshear arcs in the cloud field, matching satellite observations. These arcs, which exist in the same layer as the outflow, are caused by slow-moving wave features and serve as visual markers of the outflow–environment interface. The blocking effect where the outflow and the environmental winds meet creates a dynamic high pressure whose pressure gradient extends nearly 1000 km upwind, thus causing the environmental winds to slow down, to converge, and to sink. We discuss these results with respect to the first part of this three-part study, and apply them to another atypical rapid intensification hurricane: Matthew (2016).
Abstract
Cirrus cloud daytime top-of-the-atmosphere radiative forcing (TOA CRF) is estimated for a 2-yr NASA Micro-Pulse Lidar Network (532 nm; MPLNET) dataset collected at Fairbanks, Alaska. Two-year-averaged daytime TOA CRF is estimated to be between −1.08 and 0.78 W·m−2 (from −0.49 to 1.10 W·m−2 in 2017, and from −1.67 to 0.47 W·m−2 in 2018). This subarctic study completes a now trilogy of MPLNET ground-based cloud forcing investigations, following midlatitude and tropical studies by Campbell et al. at Greenbelt, Maryland, and Lolli et al. at Singapore. Campbell et al. hypothesize a global meridional daytime TOA CRF gradient that begins as positive at the equator (2.20–2.59 W·m−2 over land and from −0.46 to 0.42 W·m−2 over ocean at Singapore), becomes neutral in the midlatitudes (0.03–0.27 W·m−2 over land in Maryland), and turns negative moving poleward. This study does not completely confirm Campbell et al., as values are not found as exclusively negative. Evidence in historical reanalysis data suggests that daytime cirrus forcing in and around the subarctic likely once was exclusively negative. Increasing tropopause heights, inducing higher and colder cirrus, have likely increased regional forcing over the last 40 years. We hypothesize that subarctic interannual cloud variability is likely a considerable influence on global cirrus cloud forcing sensitivity, given the irregularity of polar versus midlatitude synoptic weather intrusions. This study and hypothesis lay the basis for an extrapolation of these MPLNET experiments to satellite-based lidar cirrus cloud datasets.
Abstract
Cirrus cloud daytime top-of-the-atmosphere radiative forcing (TOA CRF) is estimated for a 2-yr NASA Micro-Pulse Lidar Network (532 nm; MPLNET) dataset collected at Fairbanks, Alaska. Two-year-averaged daytime TOA CRF is estimated to be between −1.08 and 0.78 W·m−2 (from −0.49 to 1.10 W·m−2 in 2017, and from −1.67 to 0.47 W·m−2 in 2018). This subarctic study completes a now trilogy of MPLNET ground-based cloud forcing investigations, following midlatitude and tropical studies by Campbell et al. at Greenbelt, Maryland, and Lolli et al. at Singapore. Campbell et al. hypothesize a global meridional daytime TOA CRF gradient that begins as positive at the equator (2.20–2.59 W·m−2 over land and from −0.46 to 0.42 W·m−2 over ocean at Singapore), becomes neutral in the midlatitudes (0.03–0.27 W·m−2 over land in Maryland), and turns negative moving poleward. This study does not completely confirm Campbell et al., as values are not found as exclusively negative. Evidence in historical reanalysis data suggests that daytime cirrus forcing in and around the subarctic likely once was exclusively negative. Increasing tropopause heights, inducing higher and colder cirrus, have likely increased regional forcing over the last 40 years. We hypothesize that subarctic interannual cloud variability is likely a considerable influence on global cirrus cloud forcing sensitivity, given the irregularity of polar versus midlatitude synoptic weather intrusions. This study and hypothesis lay the basis for an extrapolation of these MPLNET experiments to satellite-based lidar cirrus cloud datasets.
Abstract
Tropical cyclone (TC) outflow and its relationship to TC intensity change and structure were investigated in the Office of Naval Research Tropical Cyclone Intensity (TCI) field program during 2015 using dropsondes deployed from the innovative new High-Definition Sounding System (HDSS) and remotely sensed observations from the Hurricane Imaging Radiometer (HIRAD), both on board the NASA WB-57 that flew in the lower stratosphere. Three noteworthy hurricanes were intensively observed with unprecedented horizontal resolution: Joaquin in the Atlantic and Marty and Patricia in the eastern North Pacific. Nearly 800 dropsondes were deployed from the WB-57 flight level of ∼60,000 ft (∼18 km), recording atmospheric conditions from the lower stratosphere to the surface, while HIRAD measured the surface winds in a 50-km-wide swath with a horizontal resolution of 2 km. Dropsonde transects with 4–10-km spacing through the inner cores of Hurricanes Patricia, Joaquin, and Marty depict the large horizontal and vertical gradients in winds and thermodynamic properties. An innovative technique utilizing GPS positions of the HDSS reveals the vortex tilt in detail not possible before. In four TCI flights over Joaquin, systematic measurements of a major hurricane’s outflow layer were made at high spatial resolution for the first time. Dropsondes deployed at 4-km intervals as the WB-57 flew over the center of Hurricane Patricia reveal in unprecedented detail the inner-core structure and upper-tropospheric outflow associated with this historic hurricane. Analyses and numerical modeling studies are in progress to understand and predict the complex factors that influenced Joaquin’s and Patricia’s unusual intensity changes.
Abstract
Tropical cyclone (TC) outflow and its relationship to TC intensity change and structure were investigated in the Office of Naval Research Tropical Cyclone Intensity (TCI) field program during 2015 using dropsondes deployed from the innovative new High-Definition Sounding System (HDSS) and remotely sensed observations from the Hurricane Imaging Radiometer (HIRAD), both on board the NASA WB-57 that flew in the lower stratosphere. Three noteworthy hurricanes were intensively observed with unprecedented horizontal resolution: Joaquin in the Atlantic and Marty and Patricia in the eastern North Pacific. Nearly 800 dropsondes were deployed from the WB-57 flight level of ∼60,000 ft (∼18 km), recording atmospheric conditions from the lower stratosphere to the surface, while HIRAD measured the surface winds in a 50-km-wide swath with a horizontal resolution of 2 km. Dropsonde transects with 4–10-km spacing through the inner cores of Hurricanes Patricia, Joaquin, and Marty depict the large horizontal and vertical gradients in winds and thermodynamic properties. An innovative technique utilizing GPS positions of the HDSS reveals the vortex tilt in detail not possible before. In four TCI flights over Joaquin, systematic measurements of a major hurricane’s outflow layer were made at high spatial resolution for the first time. Dropsondes deployed at 4-km intervals as the WB-57 flew over the center of Hurricane Patricia reveal in unprecedented detail the inner-core structure and upper-tropospheric outflow associated with this historic hurricane. Analyses and numerical modeling studies are in progress to understand and predict the complex factors that influenced Joaquin’s and Patricia’s unusual intensity changes.