Search Results

You are looking at 1 - 10 of 66 items for

  • Author or Editor: David S. Battisti x
  • All content x
Clear All Modify Search
David S. Battisti

Abstract

No abstract available.

Full access
David S. Battisti

Abstract

Recent theoretical and numerical modeling studies of the coupled tropical atmosphere-ocean system suggest that equatorial ocean wave dynamics may play an important role in the evolution of ENSO (El Niño/Southern Oscillation). These studies emphasize that the oceanic wave signal is confined to within a narrow equatorial band (within 6° of the equator).

In this study we use a coupled atmosphere–ocean model to investigate the role of off-equatorial Rossby waves observed in the western North Pacific Ocean during the ENSO cycle. We find that these off-equatorial Rossby waves (found poleward of 6° from the equator) are formed through both eastern boundary reflection of the equatorial Kelvin wave signal generated in a warm event (El Niño), and changes in the off-equatorial wind stress curl. Our results indicate that, independent of the generation mechanism, off-equatorial Rossby waves should be thought of as the product and not the triggering mechanism for an ENSO event.

Full access
David S. Battisti

Abstract

A simple coupled ocean–atmosphere model, similar to that of Zebiak and Cane, is used to examine the dynamic and thermodynamic processes associated with El Niño/Southern Oscillation (ENSO). The model is run for 300 years. The interannual variability which results is regular, with a period of either 3 or 4 years, quantized by the annual cycle. The amplitude (∼1.5 m s−1 wind and 2°C SST anomalies), period and structure of the interannual variability compare well with observations. The model warm event is initiated in the spring prior to the event peak, and is well described as an instability of the coupled system. During instability growth, the sea surface temperature (SST) anomaly is primarily generated by vertical upwelling processes. The SST anomaly can be approximately described by the expression ∂T/∂t = KTh − α*T, where T is the SST anomaly, t time, h the upper layer thickness (pycnocline) perturbation and α* an effective damping time which includes heat loss to the atmosphere. KT parameterizes vertical upwelling and mixed layer processes.

Oceanic wave dynamics determines the fate of the growing instability. The warming of the SST produces westerly wind anomalies in the equator central Pacific, forcing equatorially trapped Rossby waves that propagate freely to the western boundary. These waves reflect at the western boundary, sending upwelling equatorial Kelvin waves back to the central basin. These cooling Kelvin waves act to terminate instability growth and rapidly plunge the coupled system into a cold regime. The western boundary reflection is necessary for event termination. The system returns from a cold regime via reduced heat flux to the atmosphere and, to a lesser extent, by wave induced processes like that which lead to the warm event termination. The interannual variability is not produced by vacillation between two equilibrium states: a cold and a warm state. The growth rate to either the cold or warm state is too slow for the system to achieve equilibrium, even for a basin the size of the Pacific. The model results indicate that shortly after the initial set of gravest mode Rossby reflections on the western boundary, the instability growth is already being substantially moderated by the equatorial wave processes in the ocean. Thus the system is oscillatory around a single basic state.

Of the Rossby waves produced in the central Pacific by the warm event, only the two gravest mode symmetric modes are important in the reflection process, which produce the Kelvin waves that terminate the warm event. In nature, the actual western boundary for the equatorial Pacific wave guide is very ambiguous. Calculations indicate, however, that efficient reflection of the gravest symmetric Rossby waves from a more realistic boundary than the meridional wall in the model is possible. Finally, if the model is indeed simulating the correct processes controlling ENSO events, the nature of the instability mechanism that leads to growth and the wave-induced termination of the model warm event suggests that, for realistic instability growth rates for the coupled equatorial ocean-atmosphere system, interannual variability analogous to ENSO should not be possible in equatorial basins significantly smaller than the Pacific.

Full access
Ken Takahashi and David S. Battisti

Abstract

The nature of the South Pacific convergence zone (SPCZ) is addressed by focusing on the dry (and cool) zone bounded by it and the coast of South America through numerical experiments. As shown in a companion paper, this dry zone is due, to a large extent, to orographically forced subsidence. Here it is shown that the northwestward expansion of this dry zone can be explained by advection of low moist static energy by the trade winds. These results provide an explanation of the geometry of the western edge of the dry zone and, therefore, of the eastern edge of the adjacent SPCZ. Sea surface temperature underneath the SPCZ is enhanced by relatively high near-surface humidity through evaporative processes, which feeds back into its organization. However, in this model, this feedback is not critical for the existence of the SPCZ. The subsidence associated with the ITCZ in the North Hemisphere negatively affects the precipitation rate in the SPCZ. It was also found that the sensitivity of the forced response is largest for peak orographic heights below 3000 m, which indicates that the exact representation of the Andes in numerical models might not be as critical as that of lower orography such as that in southern Africa.

Full access
Aaron Donohoe and David S. Battisti

Abstract

The planetary albedo is partitioned into a component due to atmospheric reflection and a component due to surface reflection by using shortwave fluxes at the surface and top of the atmosphere in conjunction with a simple radiation model. The vast majority of the observed global average planetary albedo (88%) is due to atmospheric reflection. Surface reflection makes a relatively small contribution to planetary albedo because the atmosphere attenuates the surface contribution to planetary albedo by a factor of approximately 3. The global average planetary albedo in the ensemble average of phase 3 of the Coupled Model Intercomparison Project (CMIP3) preindustrial simulations is also primarily (87%) due to atmospheric albedo. The intermodel spread in planetary albedo is relatively large and is found to be predominantly a consequence of intermodel differences in atmospheric albedo, with surface processes playing a much smaller role despite significant intermodel differences in surface albedo. The CMIP3 models show a decrease in planetary albedo under a doubling of carbon dioxide—also primarily due to changes in atmospheric reflection (which explains more than 90% of the intermodel spread). All models show a decrease in planetary albedo due to the lowered surface albedo associated with a contraction of the cryosphere in a warmer world, but this effect is small compared to the spread in planetary albedo due to model differences in the change in clouds.

Full access
Aaron Donohoe and David S. Battisti

Abstract

The “background” state is commonly removed from synoptic fields by use of either a spatial or temporal filter prior to the application of feature tracking. Commonly used spatial and temporal filters applied to sea level pressure data admit substantially different information to be included in the synoptic fields. The spatial filter retains a time-mean field that has comparable magnitude to a typical synoptic perturbation. In contrast, the temporal filter removes the entire time-mean field. The inclusion of the time-mean spatially filtered field biases the feature tracking statistics toward large cyclone (anticyclone) magnitudes in the regions of climatological lows (highs). The resulting cyclone/anticyclone magnitude asymmetries in each region are found to be inconsistent with the unfiltered data fields and merely result from the spurious inclusion of the time-mean fields in the spatially filtered data. The temporally filtered fields do not suffer from the same problem and produce modest cyclone/anticyclone magnitude asymmetries that are consistent with the unfiltered data. This analysis suggests that the weather forecaster’s assertion that cyclones have larger amplitudes than anticyclones is due to a composite of a small magnitude asymmetry in the synoptic waves and a large contribution from inhomogeneity in the background (stationary) field.

Full access
Xiaojuan Liu and David S. Battisti

Abstract

The δ 18O of calcite (δ 18Oc) in speleothems from South America is fairly well correlated with austral summer [December–February (DJF)] insolation, indicating the role of orbitally paced changes in insolation in changing the climate of South America. Using an isotope-enabled atmospheric general circulation model (ECHAM4.6) coupled to a slab ocean model, the authors study how orbitally paced variations in insolation change climate and the isotopic composition of precipitation (δ 18Op) of South America. Compared with times of high summertime insolation, times of low insolation feature (i) a decrease in precipitation inland of tropical South America as a result of an anomalous cooling of the South American continent and hence a weakening of the South American summer monsoon and (ii) an increase in precipitation in eastern Brazil that is associated with the intensification and southward movement of the Atlantic intertropical convergence zone, which is caused by the strengthening of African winter monsoon that is induced by the anomalous cooling of northern Africa. Finally, reduced DJF insolation over southern Africa causes cooling and the generation of a tropically trapped Rossby wave that intensifies and shifts the South Atlantic convergence zone northward. In times of low insolation, δ 18Op increases in the northern Andes and decreases in northeastern Brazil, consistent with the pattern of δ 18Oc changes seen in speleothems. Further analysis shows that the decrease in δ 18Op in northeastern Brazil is due to change in the intensity of precipitation, while the increase in the northern Andes reflects a change in the seasonality of precipitation and in the isotopic composition of vapor that forms the condensates.

Full access
Aaron Donohoe and David S. Battisti

Abstract

The seasonal cycle of the heating of the atmosphere is divided into a component due to direct solar absorption in the atmosphere and a component due to the flux of energy from the surface to the atmosphere via latent, sensible, and radiative heat fluxes. Both observations and coupled climate models are analyzed. The vast majority of the seasonal heating of the northern extratropics (78% in the observations and 67% in the model average) is due to atmospheric shortwave absorption. In the southern extratropics, the seasonal heating of the atmosphere is entirely due to atmospheric shortwave absorption in both the observations and the models, and the surface heat flux opposes the seasonal heating of the atmosphere. The seasonal cycle of atmospheric temperature is surface amplified in the northern extratropics and nearly barotropic in the Southern Hemisphere; in both cases, the vertical profile of temperature reflects the source of the seasonal heating.

In the northern extratropics, the seasonal cycle of atmospheric heating over land differs markedly from that over the ocean. Over the land, the surface energy fluxes complement the driving absorbed shortwave flux; over the ocean, they oppose the absorbed shortwave flux. This gives rise to large seasonal differences in the temperature of the atmosphere over land and ocean. Downgradient temperature advection by the mean westerly winds damps the seasonal cycle of heating of the atmosphere over the land and amplifies it over the ocean. The seasonal cycle in the zonal energy transport is 4.1 PW.

Finally, the authors examine the change in the seasonal cycle of atmospheric heating in 11 models from phase 3 of the Coupled Model Intercomparison Project (CMIP3) due to a doubling of atmospheric carbon dioxide from preindustrial concentrations. The seasonal heating of the troposphere is everywhere enhanced by increased shortwave absorption by water vapor; it is reduced where sea ice has been replaced by ocean, which increases the effective heat storage reservoir of the climate system and thereby reduces the seasonal magnitude of energy fluxes between the surface and the atmosphere. As a result, the seasonal amplitude of temperature increases in the upper troposphere (where atmospheric shortwave absorption increases) and decreases at the surface (where the ice melts).

Full access
Aaron Donohoe and David S. Battisti

Abstract

The aim of this paper is to determine how an atmosphere with enhanced mean-state baroclinity can support weaker baroclinic wave activity than an atmosphere with weak mean-state baroclinity. As a case study, a Last Glacial Maximum (LGM) model simulation previously documented to have reduced baroclinic storm activity, relative to the modern-day climate (simulated by the same model), despite having an enhanced midlatitude temperature gradient, is considered. Several candidate mechanisms are evaluated to explain this apparent paradox.

A linear stability analysis is first performed on the jet in the modern-day and the LGM simulation; the latter has relatively strong barotropic velocity shear. It was found that the LGM mean state is more unstable to baroclinic disturbances than the modern-day mean state, although the three-dimensional jet structure does stabilize the LGM jet relative to the Eady growth rate. Next, feature tracking was used to assess the storm track seeding and temporal growth of disturbances. It was found that the reduction in LGM eddy activity, relative to the modern-day eddy activity, is due to the smaller magnitude of the upper-level storms entering the North Atlantic domain in the LGM. Although the LGM storms do grow more rapidly in the North Atlantic than their modern-day counterparts, the storminess in the LGM is reduced because storms seeding the region of enhanced baroclinity are weaker.

Full access
Aaron Donohoe and David S. Battisti

Abstract

The annual mean maximum meridional heat transport (MHTMAX) differs by approximately 20% among coupled climate models. The value of MHTMAX can be expressed as the difference between the equator-to-pole contrast in absorbed solar radiation (ASR*) and outgoing longwave radiation (OLR*). As an example, in the Northern Hemisphere observations, the extratropics (defined as the region with a net radiative deficit) receive an 8.2-PW deficit of net solar radiation (ASR*) relative to the global average that is balanced by a 2.4-PW deficit of outgoing longwave radiation (OLR*) and 5.8 PW of energy import via the atmospheric and oceanic circulation (MHTMAX). The intermodel spread of MHTMAX in the Coupled Model Intercomparison Project Phase 3 (CMIP3) simulations of the preindustrial climate is primarily (R 2 = 0.72) due to differences in ASR* while model differences in OLR* are uncorrelated with the MHTMAX spread. The net solar radiation (ASR*) is partitioned into contributions from (i) the equator-to-pole contrast in incident radiation acting on the global average albedo and (ii) the equator-to-pole contrast of planetary albedo, which is further subdivided into components due to atmospheric and surface reflection. In the observations, 62% of ASR* is due to the meridional distribution of incident radiation, 33% is due to atmospheric reflection, and 5% is due to surface reflection. The intermodel spread in ASR* is due to model differences in the equator-to-pole gradient in planetary albedo, which are primarily a consequence of atmospheric reflection differences (92% of the spread), and is uncorrelated with differences in surface reflection. As a consequence, the spread in MHTMAX in climate models is primarily due to the spread in cloud reflection properties.

Full access