Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: David W. Fulker x
  • Refine by Access: All Content x
Clear All Modify Search
Lynn A. Sherretz
and
David W. Fulker

The Unidata program is described and the services and benefits it will provide to university educators and researchers are discussed.

Full access
Randolph H. Ware
,
David W. Fulker
,
Seth A. Stein
,
David N. Anderson
,
Susan K. Avery
,
Richard D. Clark
,
Kelvin K. Droegemeier
,
Joachim P. Kuettner
,
J. Bernard Minster
, and
Soroosh Sorooshian

“SuomiNet,” a university-based, real-time, national Global Positioning System (GPS) network, is being developed for atmospheric research and education with funding from the National Science Foundation and with cost share from collaborating universities. The network, named to honor meteorological satellite pioneer Verner Suomi, will exploit the recently shown ability of ground-based GPS receivers to make thousands of accurate upper- and lower-atmospheric measurements per day. Phase delays induced in GPS signals by the ionosphere and neutral atmosphere can be measured with high precision simultaneously along a dozen or so GPS ray paths in the field of view. These delays can be converted into integrated water vapor (if surface pressure data or estimates are available) and total electron content (TEC), along each GPS ray path. The resulting continuous, accurate, all-weather, real-time GPS moisture data will help advance university research in mesoscale modeling and data assimilation, severe weather, precipitation, cloud dynamics, regional climate, and hydrology. Similarly, continuous, accurate, all-weather, real-time TEC data have applications in modeling and prediction of severe terrestrial and space weather, detection and forecasting of low-altitude ionospheric scintillation activity and geomagnetic storm effects at ionospheric midlatitudes, and detection of ionospheric effects induced by a variety of geophysical events. SuomiNet data also have potential applications in coastal meteorology, providing ground truth for satellite radiometry, and detection of scintillation associated with atmospheric turbulence in the lower troposphere. The goal of SuomiNet is to make large amounts of spatially and temporally dense GPS-sensed atmospheric data widely available in real time, for academic research and education. Information on participation in SuomiNet is available via www.unidata.ucar.edu/suominet.

Full access
Kevin E. Kelleher
,
Kelvin K. Droegemeier
,
Jason J. Levit
,
Carl Sinclair
,
David E. Jahn
,
Scott D. Hill
,
Lora Mueller
,
Grant Qualley
,
Tim D. Crum
,
Steven D. Smith
,
Stephen A. Del Greco
,
S. Lakshmivarahan
,
Linda Miller
,
Mohan Ramamurthy
,
Ben Domenico
, and
David W. Fulker

The NOAA NWS announced at the annual meeting of the American Meteorological Society in February 2003 its intent to create an Internet-based pseudo-operational system for delivering Weather Surveillance Radar-1988 Doppler (WSR-88D) Level II data. In April 2004, the NWS deployed the Next-Generation Weather Radar (NEXRAD) level II central collection functionality and set up a framework for distributing these data. The NWS action was the direct result of a successful joint government, university, and private sector development and test effort called the Collaborative Radar Acquisition Field Test (CRAFT) project. Project CRAFT was a multi-institutional effort among the Center for Analysis and Prediction of Storms, the University Corporation for Atmospheric Research, the University of Washington, and the three NOAA organizations, National Severe Storms Laboratory, WSR-88D Radar Operations Center (ROC), and National Climatic Data Center. The principal goal of CRAFT was to demonstrate the real-time compression and Internet-based transmission of level II data from all WSR-88D with the vision of an affordable nationwide operational implementation. The initial test bed of six radars located in and around Oklahoma grew to include 64 WSR-88D nationwide before being adopted by the NWS for national implementation. A description of the technical aspects of the award-winning Project CRAFT is given, including data transmission, reliability, latency, compression, archival, data mining, and newly developed visualization and retrieval tools. In addition, challenges encountered in transferring this research project into operations are discussed, along with examples of uses of the data.

Full access
Kevin E. Kelleher
,
Kelvin K. Droegemeier
,
Jason J. Levit
,
Carl Sinclair
,
David E. Jahn
,
Scott D. Hill
,
Lora Mueller
,
Grant Qualley
,
Tim D. Crum
,
Steven D. Smith
,
Stephen A. Del Greco
,
S. Lakshmivarahan
,
Linda Miller
,
Mohan Ramamurthy
,
Ben Domenico
, and
David W. Fulker
Full access