Search Results

You are looking at 1 - 10 of 87 items for

  • Author or Editor: Dennis P. Lettenmaier x
  • Refine by Access: All Content x
Clear All Modify Search
Dennis P. Lettenmaier
Full access
Dennis P. Lettenmaier
Full access
Dennis P. Lettenmaier
Full access
Ana P. Barros
and
Dennis P. Lettenmaier

Abstract

Precipitation in remote mountainous areas dominates the water balance of many water-short areas of the globe, such as western North America. The inaccessibility of such environments prevents adequate measurement of the spatial distribution of precipitation and, hence, direct estimation of the water balance from observations of precipitation and runoff. Resolution constraints in atmospheric models can likewise result in large biases in prediction of the water balance for grid cells that include highly diverse topography. Modeling of the advection of moisture over topographic barriers at a spatial scale sufficient to resolve the dominant topographic features offers one method of better predicting the spatial distribution of precipitation in mountainous areas. A model is described herein that simulates Lagrangian transport of moist static energy and total water through a 3D finite-element grid, where precipitation is the only scavenging agent of both variables. The model is aimed primarily at the reproduction of the properties of high-elevation precipitation for long periods of time, but it operates at a time scale (during storm periods) of 10 min to 1 h and, therefore, is also able to reproduce the distribution of storm precipitation with an accuracy that may make it appropriate for the forecasting of extreme events. The model was tested by application to the Olympic Mountains, Washington, for a period of eight years (1967–74). Areal average precipitation, estimated through use of seasonal and annual runoff, was reproduced with errors in the 10%–15% range. Similar accuracy was achieved using point estimates of monthly precipitation from snow courses and low-elevation precipitation gauges.

Full access
Edwin P. Maurer
and
Dennis P. Lettenmaier

Abstract

Understanding the links between remote conditions, such as tropical sea surface temperatures, and regional climate has the potential to improve streamflow predictions, with associated economic benefits for reservoir operation. Better definition of land surface moisture states (soil moisture and snow water storage) at the beginning of the forecast period provides an additional source of streamflow predictability. The value of long-lead predictive skill added by climate forecast information and land surface moisture states in the Missouri River basin is examined. Forecasted flows were generated that represent predictability achievable through knowledge of climate, snow, and soil moisture states. For the current main-stem reservoirs (90 × 109 m3 storage volume) only a 1.8% improvement in hydropower benefits could be achieved with perfect forecasts for lead times up to one year. This low value of prediction skill is due to the system's large storage capacity relative to annual inflow. To evaluate the effects of hydrologic predictability on a smaller system, a hypothetical system was specified with a reduced storage volume of 36 × 109 m3. This smaller system showed a 7.1% difference in annual hydropower benefits for perfect forecasts, representing $25.7 million. Using realistic streamflow predictability, $6.8 million of the $25.7 million are realizable. The climate indices provide the greatest portion of the $6.8 million, and initial soil moisture information provides the largest increment above climate knowledge. The results demonstrate that use of climate forecast information along with better definition of the basin moisture states can improve runoff predictions with modest economic value that, in general, will increase as the size of the reservoir system decreases.

Full access
Ana Paula Barros
and
Dennis P. Lettenmaier

Abstract

A simple evaporative cooling scheme was incorporated into a dynamic model to estimate orographic precipitation in mountainous regions. The orographic precipitation model is based on the transport of atmospheric moisture and the quantification of precipitable water across a 3D representation of the terrain from the surface up to 250 hPa. Advective wind fields are computed independently and boundary conditions are extracted from radiosonde data. Precipitation rates are obtained through calibration of a spatially distributed precipitation efficiency parameter. The model was applied to the central Sierra Nevada. Results show a gain of the order of 20% in threat-score coefficients designed to measure the forecast ability of the model. Accuracy gains are largest at high elevations and during intense storms associated with warm air masses.

Full access
Kingtse C. Mo
and
Dennis P Lettenmaier

Abstract

We examine reforecasts of flash droughts over the United States for the late spring (April–May), midsummer (June–July), and late summer/early autumn (August–September) with lead times up to 3 pentads based on the NOAA second-generation Global Ensemble Forecast System reforecasts version 2 (GEFSv2). We consider forecasts of both heat wave and precipitation deficit (P deficit) flash droughts, where heat wave flash droughts are characterized by high temperature and depletion of soil moisture and P deficit flash droughts are caused by lack of precipitation that leads to (rather than being the cause of) high temperature. We find that the GEFSv2 reforecasts generally capture the frequency of occurrence (FOC) patterns. The equitable threat score (ETS) of heat wave flash drought forecasts for late spring in the regions where heat wave flash droughts are most likely to occur over the north-central and Pacific Northwest regions is statistically significant up to 2 pentads. The GEFSv2 reforecasts capture the basic pattern of the FOC of P-deficit flash droughts and also are skillful up to lead about 2 pentads. However, the reforecasts overestimate the P-deficit flash drought FOC over parts of the Southwest in late spring, leading to large false alarm rates. For autumn, the reforecasts underestimate P-deficit flash drought occurrence over California and Nevada. The GEFSv2 reforecasts are able to capture the approximately linear relationship between evaporation and soil moisture, but the lack of skill in precipitation forecasts limits the skill of P-deficit flash drought forecasts.

Free access
Alan F. Hamlet
and
Dennis P. Lettenmaier

Abstract

The availability of long-term gridded datasets of precipitation, temperature, and other surface meteorological variables offers the potential for deriving a range of land surface conditions that have not been directly observed. These include, for instance, soil moisture, snow water equivalent, evapotranspiration, runoff, and subsurface moisture transport. However, gridding procedures can themselves introduce artificial trends due to incorporation of stations with different record lengths and locations. Hence, existing gridded datasets are in general not appropriate for estimation of long-term trends. Methods are described here for adjustment of gridded daily precipitation and temperature maxima and minima over the continental United States based on newly available (in electronic form) U.S. Cooperative Observer station data archived at the National Climatic Data Center from the early 1900s on. The intent is to produce gridded meteorological datasets that can be used, in conjunction with hydrologic modeling, for long-term trend analysis of simulated hydrologic variables.

Full access
Jennifer C. Adam
and
Dennis P. Lettenmaier

Abstract

River runoff to the Arctic Ocean has increased over the last century, primarily during the winter and spring and primarily from the major Eurasian rivers. Some recent studies have suggested that the additional runoff is due to increased northward transport of atmospheric moisture (and associated increased precipitation), but other studies show inconsistencies in long-term runoff and precipitation trends, perhaps partly due to biases in the observational datasets. Through trend analysis of precipitation, temperature, and streamflow data, the authors investigate the extent to which Eurasian Arctic river discharge changes are attributable to precipitation and temperature changes as well as to reservoir construction and operation between the years of 1936 and 2000. Two new datasets are applied: a gridded precipitation product, in which the low-frequency variability is constrained to match that of long-term bias-corrected precipitation station data, and a reconstructed streamflow product, in which the effects of reservoirs have been minimized using a physically based reservoir model. It is found that reservoir operations have primarily affected streamflow seasonality, increasing winter discharge and decreasing summer discharge. To understand the influences of climate on streamflow changes, the authors hypothesize three cases that would cause precipitation trends to be inconsistent with streamflow trends: first, for the coldest basins in northeastern Siberia, streamflow should be sensitive to warming primarily as a result of the melting of excess ground ice, and for these basins positive streamflow trends may exceed precipitation trends in magnitude; second, evapotranspiration (ET) in the warmer regions of western Siberia and European Russia is sensitive to warming and increased precipitation, therefore observed precipitation trends may exceed streamflow trends; and third, streamflow from the central Siberian basins should respond to both effects. It is found that, in general, these hypotheses hold true. In the coldest basins, streamflow trends diverged from precipitation trends starting in the 1950s to 1960s, and this divergence accelerated thereafter. In the warmest basins, precipitation trends consistently exceeded streamflow trends, suggesting that increased precipitation contributed to increases in both ET and streamflow. In the central basins, permafrost degradation and ET effects appear to be contributing to long-term streamflow trends in varying degrees for each basin. The results herein suggest that the extent and state of the permafrost underlying a basin is a complicating factor in understanding long-term changes in Eurasian Arctic river discharge.

Full access
Chunmei Zhu
and
Dennis P. Lettenmaier

Abstract

Studying the role of land surface conditions in the Mexican portion of the North American monsoon system (NAMS) region has been a challenge due to the paucity of long-term observations. A long-term gridded observation-based climate dataset suitable for forcing land surface models, as well as model-derived land surface states and fluxes for a domain consisting of all of Mexico, is described. The datasets span the period of January 1925–October 2004 at 1/8° spatial resolution at a subdaily (3 h) time step. The simulated runoff matches the observations plausibly over most of the 14 small river basins spanning all of Mexico, which suggests that long-term mean evapotranspiration is realistically reproduced. On this basis, and given the physically based model parameterizations of soil moisture and energy fluxes, the other surface fluxes and state variables such as soil moisture should be represented reasonably. In addition, a comparison of the surface fluxes from this study is performed with North American Regional Reanalysis (NARR) data on a seasonal mean basis. The results indicate that downward shortwave radiation is generally smaller than in the NARR data, especially in summer. Net radiation, on the other hand, is somewhat larger in the Variable Infiltration Capacity (VIC) hydrological model than in the NARR data for much of the year over much of the domain. The differences in radiative and turbulent fluxes are attributed to (i) the parameterization used in the VIC forcings for solar and downward longwave radiation, which links them to the daily temperature and temperature range, and (ii) differences in the land surface parameterizations used in VIC and the NCEP–Oregon State University–U.S. Air Force–NWS/Hydrologic Research Lab (Noah) land scheme used in NARR.

Full access