Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Dian Nur Ratri x
  • Refine by Access: All Content x
Clear All Modify Search
Dian Nur Ratri, Kirien Whan, and Maurice Schmeits

Abstract

Dynamical seasonal forecasts are afflicted with biases, including seasonal ensemble precipitation forecasts from the new ECMWF seasonal forecast system 5 (SEAS5). In this study, biases have been corrected using empirical quantile mapping (EQM) bias correction (BC). We bias correct SEAS5 24-h rainfall accumulations at seven monthly lead times over the period 1981–2010 in Java, Indonesia. For the observations, we have used a new high-resolution (0.25°) land-only gridded rainfall dataset [Southeast Asia observations (SA-OBS)]. A comparative verification of both raw and bias-corrected reforecasts is performed using several verification metrics. In this verification, the daily rainfall data were aggregated to monthly accumulated rainfall. We focus on July, August, and September because these are agriculturally important months; if the rainfall accumulation exceeds 100 mm, farmers may decide to grow a third rice crop. For these months, the first 2-month lead times show improved and mostly positive continuous ranked probability skill scores after BC. According to the Brier skill score (BSS), the BC reforecasts improve upon the raw reforecasts for the lower precipitation thresholds at the 1-month lead time. Reliability diagrams show that the BC reforecasts have good reliability for events exceeding the agriculturally relevant 100-mm threshold. A cost/loss analysis, comparing the potential economic value of the raw and BC reforecasts for this same threshold, shows that the value of the BC reforecasts is larger than that of the raw ones, and that the BC reforecasts have value for a wider range of users at 1- to 7-month lead times.

Full access
Dian Nur Ratri, Kirien Whan, and Maurice Schmeits

Abstract

The seasonal precipitation forecast is one of the essential inputs for economic and agricultural activities and has significant impact on decision-making. Large-scale modes of climate variability have strong relationships with seasonal rainfall in Java and are natural candidates for use as potential predictors in a statistical postprocessing application. We explore whether using climate indices as additional predictors in the statistical postprocessing of ECMWF Seasonal Forecast System 5 (SEAS5) precipitation can improve skill. We use parametric statistical postprocessing by applying a logistic distribution-based ensemble model output statistics (EMOS) technique. We add a variety of potential predictors in the analysis, namely SEAS5 raw and empirical quantile mapping (EQM) bias-corrected precipitation, Niño-3.4 index, dipole mode index (DMI), Madden–Julian oscillation (MJO) indices, sea surface temperature (SST) around Java, and several other predictors. We analyze the period of 1981–2010, focusing on July, August, September, and October. We use the continuous ranked probability skill score (CRPSS) and Brier skill score (BSS) in a comparative verification of raw, EQM, and EMOS seasonal precipitation forecasts. We have found that it is essential to use EQM-corrected precipitation as a predictor instead of raw precipitation in the latter. Besides, Niño-3.4 and DMI forecasts are not needed as extra predictors to improve monthly precipitation forecasts for the first lead month, except for September. However, for somewhat longer lead months, in September and October when there is more skill than climatology, the model that includes only Niño-3.4 and DMI forecasts as potential predictors performs about the same compared to the model that uses only EQM-corrected precipitation as a predictor.

Restricted access