Search Results
You are looking at 1 - 8 of 8 items for
- Author or Editor: Diego G. Miralles x
- Refine by Access: All Content x
Abstract
The validation of satellite surface soil moisture products requires comparisons between point-scale ground observations and footprint-scale (>100 km2) retrievals. In regions containing a limited number of measurement sites per footprint, some of the observed difference between the retrievals and ground observations is attributable to spatial sampling error and not the intrinsic error of the satellite retrievals themselves. Here, a triple collocation (TC) approach is applied to footprint-scale soil moisture products acquired from passive microwave remote sensing, land surface modeling, and a single ground-based station with the goal of the estimating (and correcting for) spatial sampling error in footprint-scale soil moisture estimates derived from the ground station. Using these three soil moisture products, the TC approach is shown to estimate point-to-footprint soil moisture sampling errors to within 0.0059 m3 m−3 and enhance the ability to validate satellite footprint-scale soil moisture products using existing low-density ground networks.
Abstract
The validation of satellite surface soil moisture products requires comparisons between point-scale ground observations and footprint-scale (>100 km2) retrievals. In regions containing a limited number of measurement sites per footprint, some of the observed difference between the retrievals and ground observations is attributable to spatial sampling error and not the intrinsic error of the satellite retrievals themselves. Here, a triple collocation (TC) approach is applied to footprint-scale soil moisture products acquired from passive microwave remote sensing, land surface modeling, and a single ground-based station with the goal of the estimating (and correcting for) spatial sampling error in footprint-scale soil moisture estimates derived from the ground station. Using these three soil moisture products, the TC approach is shown to estimate point-to-footprint soil moisture sampling errors to within 0.0059 m3 m−3 and enhance the ability to validate satellite footprint-scale soil moisture products using existing low-density ground networks.
Abstract
We present Multi-Source Weighted-Ensemble Precipitation, version 2 (MSWEP V2), a gridded precipitation P dataset spanning 1979–2017. MSWEP V2 is unique in several aspects: i) full global coverage (all land and oceans); ii) high spatial (0.1°) and temporal (3 hourly) resolution; iii) optimal merging of P estimates based on gauges [WorldClim, Global Historical Climatology Network-Daily (GHCN-D), Global Summary of the Day (GSOD), Global Precipitation Climatology Centre (GPCC), and others], satellites [Climate Prediction Center morphing technique (CMORPH), Gridded Satellite (GridSat), Global Satellite Mapping of Precipitation (GSMaP), and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42RT)], and reanalyses [European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) and Japanese 55-year Reanalysis (JRA-55)]; iv) distributional bias corrections, mainly to improve the P frequency; v) correction of systematic terrestrial P biases using river discharge Q observations from 13,762 stations across the globe; vi) incorporation of daily observations from 76,747 gauges worldwide; and vii) correction for regional differences in gauge reporting times. MSWEP V2 compares substantially better with Stage IV gauge–radar P data than other state-of-the-art P datasets for the United States, demonstrating the effectiveness of the MSWEP V2 methodology. Global comparisons suggest that MSWEP V2 exhibits more realistic spatial patterns in mean, magnitude, and frequency. Long-term mean P estimates for the global, land, and ocean domains based on MSWEP V2 are 955, 781, and 1,025 mm yr−1, respectively. Other P datasets consistently underestimate P amounts in mountainous regions. Using MSWEP V2, P was estimated to occur 15.5%, 12.3%, and 16.9% of the time on average for the global, land, and ocean domains, respectively. MSWEP V2 provides unique opportunities to explore spatiotemporal variations in P, improve our understanding of hydrological processes and their parameterization, and enhance hydrological model performance.
Abstract
We present Multi-Source Weighted-Ensemble Precipitation, version 2 (MSWEP V2), a gridded precipitation P dataset spanning 1979–2017. MSWEP V2 is unique in several aspects: i) full global coverage (all land and oceans); ii) high spatial (0.1°) and temporal (3 hourly) resolution; iii) optimal merging of P estimates based on gauges [WorldClim, Global Historical Climatology Network-Daily (GHCN-D), Global Summary of the Day (GSOD), Global Precipitation Climatology Centre (GPCC), and others], satellites [Climate Prediction Center morphing technique (CMORPH), Gridded Satellite (GridSat), Global Satellite Mapping of Precipitation (GSMaP), and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42RT)], and reanalyses [European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) and Japanese 55-year Reanalysis (JRA-55)]; iv) distributional bias corrections, mainly to improve the P frequency; v) correction of systematic terrestrial P biases using river discharge Q observations from 13,762 stations across the globe; vi) incorporation of daily observations from 76,747 gauges worldwide; and vii) correction for regional differences in gauge reporting times. MSWEP V2 compares substantially better with Stage IV gauge–radar P data than other state-of-the-art P datasets for the United States, demonstrating the effectiveness of the MSWEP V2 methodology. Global comparisons suggest that MSWEP V2 exhibits more realistic spatial patterns in mean, magnitude, and frequency. Long-term mean P estimates for the global, land, and ocean domains based on MSWEP V2 are 955, 781, and 1,025 mm yr−1, respectively. Other P datasets consistently underestimate P amounts in mountainous regions. Using MSWEP V2, P was estimated to occur 15.5%, 12.3%, and 16.9% of the time on average for the global, land, and ocean domains, respectively. MSWEP V2 provides unique opportunities to explore spatiotemporal variations in P, improve our understanding of hydrological processes and their parameterization, and enhance hydrological model performance.
Abstract
We present Multi-Source Weather (MSWX), a seamless global gridded near-surface meteorological product featuring a high 3-hourly 0.1° resolution, near-real-time updates (∼3-h latency), and bias-corrected medium-range (up to 10 days) and long-range (up to 7 months) forecast ensembles. The product includes 10 meteorological variables: precipitation, air temperature, daily minimum and maximum air temperature, surface pressure, relative and specific humidity, wind speed, and downward shortwave and longwave radiation. The historical part of the record starts 1 January 1979 and is based on ERA5 data bias corrected and downscaled using high-resolution reference climatologies. The data extension to within ∼3 h of real time is based on analysis data from GDAS. The 30-member medium-range forecast ensemble is based on GEFS and updated daily. Finally, the 51-member long-range forecast ensemble is based on SEAS5 and updated monthly. The near-real-time and forecast data are statistically harmonized using running-mean and cumulative distribution function-matching approaches to obtain a seamless record covering 1 January 1979 to 7 months from now. MSWX presents new and unique opportunities for hydrological modeling, climate analysis, impact studies, and monitoring and forecasting of droughts, floods, and heatwaves (within the bounds of the caveats and limitations discussed herein). The product is available at www.gloh2o.org/mswx.
Abstract
We present Multi-Source Weather (MSWX), a seamless global gridded near-surface meteorological product featuring a high 3-hourly 0.1° resolution, near-real-time updates (∼3-h latency), and bias-corrected medium-range (up to 10 days) and long-range (up to 7 months) forecast ensembles. The product includes 10 meteorological variables: precipitation, air temperature, daily minimum and maximum air temperature, surface pressure, relative and specific humidity, wind speed, and downward shortwave and longwave radiation. The historical part of the record starts 1 January 1979 and is based on ERA5 data bias corrected and downscaled using high-resolution reference climatologies. The data extension to within ∼3 h of real time is based on analysis data from GDAS. The 30-member medium-range forecast ensemble is based on GEFS and updated daily. Finally, the 51-member long-range forecast ensemble is based on SEAS5 and updated monthly. The near-real-time and forecast data are statistically harmonized using running-mean and cumulative distribution function-matching approaches to obtain a seamless record covering 1 January 1979 to 7 months from now. MSWX presents new and unique opportunities for hydrological modeling, climate analysis, impact studies, and monitoring and forecasting of droughts, floods, and heatwaves (within the bounds of the caveats and limitations discussed herein). The product is available at www.gloh2o.org/mswx.
Abstract
This article developed and implemented a new methodology for calculating the standardized evapotranspiration deficit index (SEDI) globally based on the log-logistic distribution to fit the evaporation deficit (ED), the difference between actual evapotranspiration (ETa) and atmospheric evaporative demand (AED). Our findings demonstrate that, regardless of the AED dataset used, a log-logistic distribution most optimally fitted the ED time series. As such, in many regions across the terrestrial globe, the SEDI is insensitive to the AED method used for calculation, with the exception of winter months and boreal regions. The SEDI showed significant correlations (p < 0.05) with the standardized precipitation evapotranspiration index (SPEI) across a wide range of regions, particularly for short (<3 month) SPEI time scales. This work provides a robust approach for calculating spatially and temporally comparable SEDI estimates, regardless of the climate region and land surface conditions, and it assesses the performance and the applicability of the SEDI to quantify drought severity across varying crop and natural vegetation areas.
Abstract
This article developed and implemented a new methodology for calculating the standardized evapotranspiration deficit index (SEDI) globally based on the log-logistic distribution to fit the evaporation deficit (ED), the difference between actual evapotranspiration (ETa) and atmospheric evaporative demand (AED). Our findings demonstrate that, regardless of the AED dataset used, a log-logistic distribution most optimally fitted the ED time series. As such, in many regions across the terrestrial globe, the SEDI is insensitive to the AED method used for calculation, with the exception of winter months and boreal regions. The SEDI showed significant correlations (p < 0.05) with the standardized precipitation evapotranspiration index (SPEI) across a wide range of regions, particularly for short (<3 month) SPEI time scales. This work provides a robust approach for calculating spatially and temporally comparable SEDI estimates, regardless of the climate region and land surface conditions, and it assesses the performance and the applicability of the SEDI to quantify drought severity across varying crop and natural vegetation areas.
ABSTRACT
Life on Earth vitally depends on the availability of water. Human pressure on freshwater resources is increasing, as is human exposure to weather-related extremes (droughts, storms, floods) caused by climate change. Understanding these changes is pivotal for developing mitigation and adaptation strategies. The Global Climate Observing System (GCOS) defines a suite of essential climate variables (ECVs), many related to the water cycle, required to systematically monitor Earth’s climate system. Since long-term observations of these ECVs are derived from different observation techniques, platforms, instruments, and retrieval algorithms, they often lack the accuracy, completeness, and resolution, to consistently characterize water cycle variability at multiple spatial and temporal scales. Here, we review the capability of ground-based and remotely sensed observations of water cycle ECVs to consistently observe the hydrological cycle. We evaluate the relevant land, atmosphere, and ocean water storages and the fluxes between them, including anthropogenic water use. Particularly, we assess how well they close on multiple temporal and spatial scales. On this basis, we discuss gaps in observation systems and formulate guidelines for future water cycle observation strategies. We conclude that, while long-term water cycle monitoring has greatly advanced in the past, many observational gaps still need to be overcome to close the water budget and enable a comprehensive and consistent assessment across scales. Trends in water cycle components can only be observed with great uncertainty, mainly due to insufficient length and homogeneity. An advanced closure of the water cycle requires improved model–data synthesis capabilities, particularly at regional to local scales.
ABSTRACT
Life on Earth vitally depends on the availability of water. Human pressure on freshwater resources is increasing, as is human exposure to weather-related extremes (droughts, storms, floods) caused by climate change. Understanding these changes is pivotal for developing mitigation and adaptation strategies. The Global Climate Observing System (GCOS) defines a suite of essential climate variables (ECVs), many related to the water cycle, required to systematically monitor Earth’s climate system. Since long-term observations of these ECVs are derived from different observation techniques, platforms, instruments, and retrieval algorithms, they often lack the accuracy, completeness, and resolution, to consistently characterize water cycle variability at multiple spatial and temporal scales. Here, we review the capability of ground-based and remotely sensed observations of water cycle ECVs to consistently observe the hydrological cycle. We evaluate the relevant land, atmosphere, and ocean water storages and the fluxes between them, including anthropogenic water use. Particularly, we assess how well they close on multiple temporal and spatial scales. On this basis, we discuss gaps in observation systems and formulate guidelines for future water cycle observation strategies. We conclude that, while long-term water cycle monitoring has greatly advanced in the past, many observational gaps still need to be overcome to close the water budget and enable a comprehensive and consistent assessment across scales. Trends in water cycle components can only be observed with great uncertainty, mainly due to insufficient length and homogeneity. An advanced closure of the water cycle requires improved model–data synthesis capabilities, particularly at regional to local scales.