Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Dim Coumou x
  • All content x
Clear All Modify Search
Marlene Kretschmer, Dim Coumou, Jonathan F. Donges, and Jakob Runge

Abstract

In recent years, the Northern Hemisphere midlatitudes have suffered from severe winters like the extreme 2012/13 winter in the eastern United States. These cold spells were linked to a meandering upper-tropospheric jet stream pattern and a negative Arctic Oscillation index (AO). However, the nature of the drivers behind these circulation patterns remains controversial. Various studies have proposed different mechanisms related to changes in the Arctic, most of them related to a reduction in sea ice concentrations or increasing Eurasian snow cover.

Here, a novel type of time series analysis, called causal effect networks (CEN), based on graphical models is introduced to assess causal relationships and their time delays between different processes. The effect of different Arctic actors on winter circulation on weekly to monthly time scales is studied, and robust network patterns are found. Barents and Kara sea ice concentrations are detected to be important external drivers of the midlatitude circulation, influencing winter AO via tropospheric mechanisms and through processes involving the stratosphere. Eurasia snow cover is also detected to have a causal effect on sea level pressure in Asia, but its exact role on AO remains unclear. The CEN approach presented in this study overcomes some difficulties in interpreting correlation analyses, complements model experiments for testing hypotheses involving teleconnections, and can be used to assess their validity. The findings confirm that sea ice concentrations in autumn in the Barents and Kara Seas are an important driver of winter circulation in the midlatitudes.

Full access
Sem Vijverberg, Maurice Schmeits, Karin van der Wiel, and Dim Coumou

Abstract

Extreme summer temperatures can cause severe societal impacts. Early warnings can aid societal preparedness, but reliable forecasts for extreme temperatures at subseasonal-to-seasonal (S2S) time scales are still missing. Earlier work showed that specific sea surface temperature (SST) patterns over the northern Pacific Ocean are precursors of high temperature events in the eastern United States, which might provide skillful forecasts at long leads (~50 days). However, the verification was based on a single skill metric, and a probabilistic forecast was missing. Here, we introduce a novel algorithm that objectively extracts robust precursors from SST linked to a binary target variable. When applied to reanalysis (ERA-5) and climate model data (EC-Earth), we identify robust precursors with the clearest links over the North Pacific. Different precursors are tested as input for a statistical model to forecast high temperature events. Using multiple skill metrics for verification, we show that daily high temperature events have no predictive skill at long leads. By systematically testing the influence of temporal and spatial aggregation, we find that noise in the target time series is an important bottleneck for predicting extreme events on S2S time scales. We show that skill can be increased by a combination of 1) aggregating spatially and/or temporally, 2) lowering the threshold of the target events to increase the base rate, or 3) adding additional variables containing predictive information (soil moisture). Exploiting these skill-enhancing factors, we obtain forecast skill for moderate heat waves (i.e., 2 or more hot days closely clustered together in time) with up to 50 days of lead time.

Open access
Marlene Kretschmer, Dim Coumou, Laurie Agel, Mathew Barlow, Eli Tziperman, and Judah Cohen

Abstract

The extratropical stratosphere in boreal winter is characterized by a strong circumpolar westerly jet, confining the coldest temperatures at high latitudes. The jet, referred to as the stratospheric polar vortex, is predominantly zonal and centered around the pole; however, it does exhibit large variability in wind speed and location. Previous studies showed that a weak stratospheric polar vortex can lead to cold-air outbreaks in the midlatitudes, but the exact relationships and mechanisms are unclear. Particularly, it is unclear whether stratospheric variability has contributed to the observed anomalous cooling trends in midlatitude Eurasia. Using hierarchical clustering, we show that over the last 37 years, the frequency of weak vortex states in mid- to late winter (January and February) has increased, which was accompanied by subsequent cold extremes in midlatitude Eurasia. For this region, 60% of the observed cooling in the era of Arctic amplification, that is, since 1990, can be explained by the increased frequency of weak stratospheric polar vortex states, a number that increases to almost 80% when El Niño–Southern Oscillation (ENSO) variability is included as well.

Open access
Gabriele Messori, Emanuele Bevacqua, Rodrigo Caballero, Dim Coumou, Paolo De Luca, Davide Faranda, Kai Kornhuber, Olivia Martius, Flavio Pons, Colin Raymond, Kunhui Ye, Pascal Yiou, and Jakob Zscheischler
Full access