Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Dimitrios Stampoulis x
  • Refine by Access: All Content x
Clear All Modify Search
Dimitrios Stampoulis and Emmanouil N. Anagnostou

Abstract

An extensive evaluation of two global-scale high-resolution satellite rainfall products is performed using 8 yr (2003–10) of reference rainfall data derived from a network of rain gauges over Europe. The comparisons are performed at a daily temporal scale and 0.25° spatial grid resolution. The satellite rainfall techniques investigated in this study are the Tropical Rainfall Measuring Mission (TRMM) 3B42 V6 (gauge-calibrated version) and the Climate Prediction Center morphing technique (CMORPH). The intercomparison and validation of these satellite products is performed both qualitatively and quantitatively. In the qualitative part of the analysis, error maps of various validation statistics are shown, whereas the quantitative analysis provides information about the performance of the satellite products relative to the rainfall magnitude or ground elevation. Moreover, a time series analysis of certain error statistics is used to depict the temporal variations of the accuracy of the two satellite techniques. The topographical and seasonal influences on the performance of the two satellite products over the European domain are also investigated. The error statistics presented herein indicate that both orography and seasonal variability affect the efficiency of the satellite rainfall retrieval techniques. Specifically, both satellite techniques underestimate rainfall over higher elevations, especially during the cold season, and their performance is subject to seasonal changes. A significant difference between the two satellite products is that TRMM 3B42 V6 generally overestimates rainfall, while CMORPH underestimates it. CMORPH’s mean error is shown to be of higher magnitude than that of 3B42 V6, while in terms of random error variance, CMORPH exhibits lower (higher) values than those of 3B42 V6 in the winter (summer) months.

Full access
Dimitrios Stampoulis, Emmanouil N. Anagnostou, and Efthymios I. Nikolopoulos

Abstract

Heavy precipitation events (HPE) can incur significant economic losses as well as losses of lives through catastrophic floods. Evidence of increasing heavy precipitation at continental and global scales clearly emphasizes the need to accurately quantify these phenomena. The current study focuses on the error analysis of two of the main quasi-global, high-resolution satellite products [Climate Prediction Center (CPC) morphing technique (CMORPH) and Precipitation Estimation from Remotely Sensed Imagery Using Artificial Neural Networks (PERSIANN)], using rainfall data derived from high-quality weather radar rainfall estimates as a reference. This analysis is based on seven major flood-inducing HPEs that developed over complex terrain areas in northern Italy (Fella and Sessia regions) and southern France (Cevennes–Vivarais region). The storm cases were categorized as convective or stratiform based on their characteristics, including rainfall intensity, duration, and area coverage. The results indicate that precipitation type has an effect on the algorithm's ability to capture rainfall effectively. Convective storm cases exhibited greater rain rate retrieval errors, while low rain rates in stratiform-type systems are not well captured by the satellite algorithms investigated in this study, thus leading to greater missed rainfall volumes. Overall, CMORPH exhibited better error statistics than PERSIANN for the HPEs of this study. Similarities are also shown in the two satellite products' error characteristics for the HPEs that occurred in the same geographical area.

Restricted access
Viviana Maggioni, Humberto J. Vergara, Emmanouil N. Anagnostou, Jonathan J. Gourley, Yang Hong, and Dimitrios Stampoulis

Abstract

This study uses a stochastic ensemble-based representation of satellite rainfall error to predict the propagation in flood simulation of three quasi-global-scale satellite rainfall products across a range of basin scales. The study is conducted on the Tar-Pamlico River basin in the southeastern United States based on 2 years of data (2004 and 2006). The NWS Multisensor Precipitation Estimator (MPE) dataset is used as the reference for evaluating three satellite rainfall products: the Tropical Rainfall Measuring Mission (TRMM) real-time 3B42 product (3B42RT), the Climate Prediction Center morphing technique (CMORPH), and the Precipitation Estimation from Remotely Sensed Imagery Using Artificial Neural Networks–Cloud Classification System (PERSIANN-CCS). Both ground-measured runoff and streamflow simulations, derived from the NWS Research Distributed Hydrologic Model forced with the MPE dataset, are used as benchmarks to evaluate ensemble streamflow simulations obtained by forcing the model with satellite rainfall corrected using stochastic error simulations from a two-dimensional satellite rainfall error model (SREM2D). The ability of the SREM2D ensemble error corrections to improve satellite rainfall-driven runoff simulations and to characterize the error variability of those simulations is evaluated. It is shown that by applying the SREM2D error ensemble to satellite rainfall, the simulated runoff ensemble is able to envelope both the reference runoff simulation and observed streamflow. The best (uncorrected) product is 3B42RT, but after applying SREM2D, CMORPH becomes the most accurate of the three products in the prediction of runoff variability. The impact of spatial resolution on the rainfall-to-runoff error propagation is also evaluated for a cascade of basin scales (500–5000 km2). Results show a doubling in the bias from rainfall to runoff at all basin scales. Significant dependency to catchment area is exhibited for the random error propagation component.

Restricted access
Humberto Vergara, Yang Hong, Jonathan J. Gourley, Emmanouil N. Anagnostou, Viviana Maggioni, Dimitrios Stampoulis, and Pierre-Emmanuel Kirstetter

Abstract

Uncertainty due to resolution of current satellite-based rainfall products is believed to be an important source of error in applications of hydrologic modeling and forecasting systems. A method to account for the input’s resolution and to accurately evaluate the hydrologic utility of satellite rainfall estimates is devised and analyzed herein. A radar-based Multisensor Precipitation Estimator (MPE) rainfall product (4 km, 1 h) was utilized to assess the impact of resolution of precipitation products on the estimation of rainfall and subsequent simulation of streamflow on a cascade of basins ranging from approximately 500 to 5000 km2. MPE data were resampled to match the Tropical Rainfall Measuring Mission’s (TRMM) 3B42RT satellite rainfall product resolution (25 km, 3 h) and compared with its native resolution data to estimate errors in rainfall fields. It was found that resolution degradation considerably modifies the spatial structure of rainfall fields. Additionally, a sensitivity analysis was designed to effectively isolate the error on hydrologic simulations due to rainfall resolution using a distributed hydrologic model. These analyses revealed that resolution degradation introduces a significant amount of error in rainfall fields, which propagated to the streamflow simulations as magnified bias and dampened aggregated error (RMSEs). Furthermore, the scale dependency of errors due to resolution degradation was found to intensify with increasing streamflow magnitudes. The hydrologic model was calibrated with satellite- and original-resolution MPE using a multiscale approach. The resulting simulations had virtually the same skill, suggesting that the effects of rainfall resolution can be accounted for during calibration of hydrologic models, which was further demonstrated with 3B42RT.

Full access