Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Djamal Khelif x
  • Refine by Access: All Content x
Clear All Modify Search
Carl A. Friehe and Djamal Khelif

Abstract

Three aircraft temperature sensors were compared in clear-air conditions on the NCAR King Air: a standard Rosemount nondeiced, fast-response flight test probe, the NCAR K probe, and a modified Rosemount probe with the platinum wire element replaced with a small thermistor bead. Responses to transient temperature changes were compared from soundings through sharp inversions. High-frequency spectral comparisons were obtained from level runs in the marine boundary layer. All three probes followed a two-time-constant response. The response of the thermistor-modified Rosemount probe was, however, much closer to a one-time-constant model than the two others. Following previous results and analyses, it appears that the longer time constant in the Rosemount probe is largely due to the contact of the platinum wire element, which is wound around mica supports. The long unsupported wire elements in the NCAR K probe do produce a superior high-frequency response, but low-frequency response is anomalous, perhaps due to the large plastic body placed upstream of the wires to separate out particles. The two-time-constant temperature response was compared for the three probes by developing expressions for the time derivative and time integral of the normalized temperature that separated the relative contributions of the sensor element and its support.

Full access
L. Mahrt, Dean Vickers, Edgar L Andreas, and Djamal Khelif

Abstract

The variation of the sea surface sensible heat flux is investigated using data from the Gulf of Tehuantepec Experiment (GOTEX) and from eight additional aircraft datasets representing a variety of surface conditions. This analysis focuses on near-neutral conditions because these conditions are common over the sea and are normally neglected, partly because of uncertain reliability of measurements of the small air–sea temperature difference. For all of the datasets, upward heat flux is observed for slightly stable conditions. The frequency of this “countergradient” heat flux increases with increasing wind speed and is possibly related to sea spray or microscale variations of surface temperature on the wave scale. Upward area-averaged sensible heat flux for slightly stable conditions can also be generated by mesoscale heterogeneity of the sea surface temperature (SST). Significant measurement errors cannot be ruled out.

The countergradient heat flux for weakly stable conditions is least systematic for weaker winds, even though it occurs with weak winds in all of the datasets. In an effort to reduce offset errors and different SST processing and calibration procedures among field programs, the authors adjusted the SST in each field program to minimize the countergradient flux for weak winds. With or without this adjustment for the combined dataset, the extent of the upward heat flux for weakly stable conditions increases with increasing wind speed.

Full access
Kathleen K. Crahan, Dean A. Hegg, David S. Covert, Haflidi Jonsson, Jeffrey S. Reid, Djamal Khelif, and Barbara J. Brooks

Abstract

Although the importance of the aerosol contribution to the global radiative budget has been recognized, the forcings of aerosols in general, and specifically the role of the organic component in these forcings, still contain large uncertainties. In an attempt to better understand the relationship between the background forcings of aerosols and their chemical speciation, marine air samples were collected off the windward coast of Oahu, Hawaii, during the Rough Evaporation Duct project (RED) using filters mounted on both the Twin Otter aircraft and the Floating Instrument Platform (FLIP) research platform. Laboratory analysis revealed a total of 17 species, including 4 carboxylic acids and 2 carbohydrates that accounted for 74% ± 20% of the mass gain observed on the shipboard filters, suggesting a possible significant unresolved organic component. The results were correlated with in situ measurements of particle light scattering (σ sp) at 550 nm and with aerosol hygroscopicities. Principal component analysis revealed a small but ubiquitous pollution component affecting the σ sp and aerosol hygroscopicity of the remote marine air. The Princeton Organic-Electrolyte Model (POEM) was used to predict the growth factor of the aerosols based upon the chemical composition. This output, coupled with measured aerosol size distributions, was used to attempt to reproduce the observed σ sp. It was found that while the POEM model was able to reproduce the expected trends when the organic component of the aerosol was varied, due to large uncertainties especially in the aerosol sizing measurements, the σ sp predicted by the POEM model was consistently higher than observed.

Full access
Kenneth Anderson, Barbara Brooks, Peter Caffrey, Antony Clarke, Leo Cohen, Katie Crahan, Kenneth Davidson, Arie De Jong, Gerrit De Leeuw, Denis Dion, Stephen Doss-Hammel, Paul Frederickson, Carl Friehe, Tihomir Hristov, Djamal Khelif, Marcel Moerman, Jeffery S. Reid, Steven Reising, Michael Smith, Eric Terrill, and Dimitris Tsintikidis

In the surface layer over the ocean the Monin–Obukhov similarity theory is often applied to construct vertical profiles of pressure, temperature, humidity, and wind speed. In this context, the rough boundary layer is derived from empirical relations where ocean wave characteristics are neglected. For seas where wind speed is less than ~ 10 m s−1 there is excellent agreement for both meteorological and microwave propagation theory and measurements. However, recent evidence indicates that even small waves perturb these profiles. It is, therefore, hypothesized that mechanical forcing by sea waves is responsible for modifying scalar profiles in the lowest portion of the surface layer, thereby reducing the effects of evaporation ducting on microwave signal propagation. This hypothesis, that a rough sea surface modifies the evaporation duct, was the primary motivation for the Rough Evaporation Duct (RED) experiment.

RED was conducted off of the Hawaiian Island of Oahu from late August to mid-September 2001. The Scripps Institution of Oceanography Research Platform Floating Instrument Platform, moored about 10 km off the northeast coast of Oahu, hosted the primary meteorological sensor suites and the transmitters for both the microwave and the infrared propagation links. Two land sites were instrumented—one with microwave receivers and the other with an infrared receiver—two buoys were deployed, a small boat was instrumented, and two aircraft flew various tracks to sense both sea and atmospheric conditions.

Through meteorological and propagation measurements, RED achieved a number of its objectives. First, although we did not experience the desired conditions of simultaneous high seas, high winds, and large surface gradients of temperature and humidity necessary to significantly affect the evaporation duct, observations verify that waves do modify the scalars within the air–sea surface layer. Second, an intriguing and controversial result is the lack of agreement of the scalar profile constants with those typically observed over land. Finally, as expected for the conditions encountered during RED (trade wind, moderate seas, unstable), we show that the Monin–Obukhov similarity theory, combined with high-quality meteorological measurements, can be used by propagation models to accurately predict microwave signal levels.

Full access
James Edson, Timothy Crawford, Jerry Crescenti, Tom Farrar, Nelson Frew, Greg Gerbi, Costas Helmis, Tihomir Hristov, Djamal Khelif, Andrew Jessup, Haf Jonsson, Ming Li, Larry Mahrt, Wade McGillis, Albert Plueddemann, Lian Shen, Eric Skyllingstad, Tim Stanton, Peter Sullivan, Jielun Sun, John Trowbridge, Dean Vickers, Shouping Wang, Qing Wang, Robert Weller, John Wilkin, Albert J. Williams III, D. K. P. Yue, and Chris Zappa

The Office of Naval Research's Coupled Boundary Layers and Air–Sea Transfer (CBLAST) program is being conducted to investigate the processes that couple the marine boundary layers and govern the exchange of heat, mass, and momentum across the air–sea interface. CBLAST-LOW was designed to investigate these processes at the low-wind extreme where the processes are often driven or strongly modulated by buoyant forcing. The focus was on conditions ranging from negligible wind stress, where buoyant forcing dominates, up to wind speeds where wave breaking and Langmuir circulations play a significant role in the exchange processes. The field program provided observations from a suite of platforms deployed in the coastal ocean south of Martha's Vineyard. Highlights from the measurement campaigns include direct measurement of the momentum and heat fluxes on both sides of the air–sea interface using a specially constructed Air–Sea Interaction Tower (ASIT), and quantification of regional oceanic variability over scales of O(1–104 mm) using a mesoscale mooring array, aircraft-borne remote sensors, drifters, and ship surveys. To our knowledge, the former represents the first successful attempt to directly and simultaneously measure the heat and momentum exchange on both sides of the air–sea interface. The latter provided a 3D picture of the oceanic boundary layer during the month-long main experiment. These observations have been combined with numerical models and direct numerical and large-eddy simulations to investigate the processes that couple the atmosphere and ocean under these conditions. For example, the oceanic measurements have been used in the Regional Ocean Modeling System (ROMS) to investigate the 3D evolution of regional ocean thermal stratification. The ultimate goal of these investigations is to incorporate improved parameterizations of these processes in coupled models such as the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) to improve marine forecasts of wind, waves, and currents.

Full access
Qing Wang, Denny P. Alappattu, Stephanie Billingsley, Byron Blomquist, Robert J. Burkholder, Adam J. Christman, Edward D. Creegan, Tony de Paolo, Daniel P. Eleuterio, Harindra Joseph S. Fernando, Kyle B. Franklin, Andrey A. Grachev, Tracy Haack, Thomas R. Hanley, Christopher M. Hocut, Teddy R. Holt, Kate Horgan, Haflidi H. Jonsson, Robert A. Hale, John A. Kalogiros, Djamal Khelif, Laura S. Leo, Richard J. Lind, Iossif Lozovatsky, Jesus Planella-Morato, Swagato Mukherjee, Wendell A. Nuss, Jonathan Pozderac, L. Ted Rogers, Ivan Savelyev, Dana K. Savidge, R. Kipp Shearman, Lian Shen, Eric Terrill, A. Marcela Ulate, Qi Wang, R. Travis Wendt, Russell Wiss, Roy K. Woods, Luyao Xu, Ryan T. Yamaguchi, and Caglar Yardim

Abstract

The Coupled Air–Sea Processes and Electromagnetic Ducting Research (CASPER) project aims to better quantify atmospheric effects on the propagation of radar and communication signals in the marine environment. Such effects are associated with vertical gradients of temperature and water vapor in the marine atmospheric surface layer (MASL) and in the capping inversion of the marine atmospheric boundary layer (MABL), as well as the horizontal variations of these vertical gradients. CASPER field measurements emphasized simultaneous characterization of electromagnetic (EM) wave propagation, the propagation environment, and the physical processes that gave rise to the measured refractivity conditions. CASPER modeling efforts utilized state-of-the-art large-eddy simulations (LESs) with a dynamically coupled MASL and phase-resolved ocean surface waves. CASPER-East was the first of two planned field campaigns, conducted in October and November 2015 offshore of Duck, North Carolina. This article highlights the scientific motivations and objectives of CASPER and provides an overview of the CASPER-East field campaign. The CASPER-East sampling strategy enabled us to obtain EM wave propagation loss as well as concurrent environmental refractive conditions along the propagation path. This article highlights the initial results from this sampling strategy showing the range-dependent propagation loss, the atmospheric and upper-oceanic variability along the propagation range, and the MASL thermodynamic profiles measured during CASPER-East.

Open access