Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Don Cline x
  • All content x
Clear All Modify Search
Nick Rutter, Don Cline, and Long Li

Abstract

The National Operational Hydrologic Remote Sensing Center (NOHRSC) Snow Model (NSM) is an energy- and mass-balance model used by the National Oceanic and Atmospheric Administration’s National Weather Service for moderate-resolution spatially distributed snow analysis and data assimilation over the United States. The NSM was evaluated in a one-dimensional mode using meteorological and snowpit observations from five sites in Colorado collected during 2002–03. Four parameters estimated by the NSM [snow water equivalent (SWE), snow depth, average snowpack temperature, and snow surface temperature] were compared with snowpit observations and with estimates from another snow energy and mass-balance model, SNTHERM. Root-mean-squared differences (RMSDs) between snowpit SWE observations (January–June) at all sites and estimates from the NSM were about 11% (RMSD = 0.073 m) of the average maximum observed SWE from all sites of 0.694 m. SNTHERM exhibited only a slightly better agreement (RMSD = 0.066 m). During the winter and early spring period before snowpacks became isothermal at 273.15 K, both NSM and SNTHERM simulated significantly cooler average snowpack temperatures than observed (RMSD = 3 and 2 K, respectively). During this snow accumulation period estimates of SWE by both models were very similar. Differences in modeled SWE were traced to short periods (5–21 days) during isothermal conditions in early spring when the two models diverged. These events caused SWE differences that persisted throughout the ablation period and resulted in a range in melt-out times of 0.2–7.2 days between depth observations and modeled estimates. The divergence in SWE resulted from differences in snowmelt fluxes estimated by the two models, which are suggested to result from 1) liquid water fractions within a snowpack being estimated by the NSM using an internal energy method and by SNTHERM using a semiempirical temperature-based approach, and 2) SNTHERM, but not the NSM, accounting for the small liquid water fraction that coexists in equilibrium with snow when the snowpack surface is dry (<273.15 K).

Full access
Kelly Elder, Don Cline, Glen E. Liston, and Richard Armstrong

Abstract

A field measurement program was undertaken as part NASA’s Cold Land Processes Experiment (CLPX). Extensive snowpack and soil measurements were taken at field sites in Colorado over four study periods during the two study years (2002 and 2003). Measurements included snow depth, density, temperature, grain type and size, surface wetness, surface roughness, and canopy cover. Soil moisture measurements were made in the near-surface layer in snow pits. Measurements were taken in the Fraser valley, North Park, and Rabbit Ears Pass areas of Colorado. Sites were chosen to gain a wide representation of snowpack types and physiographies typical of seasonally snow-covered regions of the world. The data have been collected with rigorous protocol to ensure consistency and quality, and they have undergone several levels of quality assurance to produce a high-quality spatial dataset for continued cold lands hydrological research. The dataset is archived at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado.

Full access
Kelly Elder, Angus Goodbody, Don Cline, Paul Houser, Glen E. Liston, Larry Mahrt, and Nick Rutter

Abstract

A short-term meteorological database has been developed for the Cold Land Processes Experiment (CLPX). This database includes meteorological observations from stations designed and deployed exclusively for CLPX as well as observations available from other sources located in the small regional study area (SRSA) in north-central Colorado. The measured weather parameters include air temperature, relative humidity, wind speed and direction, barometric pressure, short- and longwave radiation, leaf wetness, snow depth, snow water content, snow and surface temperatures, volumetric soil moisture content, soil temperature, precipitation, water vapor flux, carbon dioxide flux, and soil heat flux. The CLPX weather stations include 10 main meteorological towers, 1 tower within each of the nine intensive study areas (ISA) and one near the local scale observation site (LSOS); and 36 simplified towers, with one tower at each of the four corners of each of the nine ISAs, which measured a reduced set of parameters. An eddy covariance system within the North Park mesocell study area (MSA) collected a variety of additional parameters beyond the 10 standard CLPX tower components. Additional meteorological observations come from a variety of existing networks maintained by the U.S. Forest Service, U.S. Geological Survey, Natural Resource Conservation Service, and the Institute of Arctic and Alpine Research. Temporal coverage varies from station to station, but it is most concentrated during the 2002/03 winter season. These data are useful in local meteorological energy balance research and for model development and testing. These data can be accessed through the National Snow and Ice Data Center Web site.

Full access
Robert E. Davis, Thomas H. Painter, Rick Forster, Don Cline, Richard Armstrong, Terry Haran, Kyle McDonald, and Kelly Elder

Abstract

This paper describes satellite data collected as part of the 2002/03 Cold Land Processes Experiment (CLPX). These data include multispectral and hyperspectral optical imaging, and passive and active microwave observations of the test areas. The CLPX multispectral optical data include the Advanced Very High Resolution Radiometer (AVHRR), the Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Multi-angle Imaging Spectroradiometer (MISR). The spaceborne hyperspectral optical data consist of measurements acquired with the NASA Earth Observing-1 (EO-1) Hyperion imaging spectrometer. The passive microwave data include observations from the Special Sensor Microwave Imager (SSM/I) and the Advanced Microwave Scanning Radiometer (AMSR) for Earth Observing System (EOS; AMSR-E). Observations from the Radarsat synthetic aperture radar and the SeaWinds scatterometer flown on QuikSCAT make up the active microwave data.

Full access
Don Cline, Simon Yueh, Bruce Chapman, Boba Stankov, Al Gasiewski, Dallas Masters, Kelly Elder, Richard Kelly, Thomas H. Painter, Steve Miller, Steve Katzberg, and Larry Mahrt

Abstract

This paper describes the airborne data collected during the 2002 and 2003 Cold Land Processes Experiment (CLPX). These data include gamma radiation observations, multi- and hyperspectral optical imaging, optical altimetry, and passive and active microwave observations of the test areas. The gamma observations were collected with the NOAA/National Weather Service Gamma Radiation Detection System (GAMMA). The CLPX multispectral optical data consist of very high-resolution color-infrared orthoimagery of the intensive study areas (ISAs) by TerrainVision. The airborne hyperspectral optical data consist of observations from the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Optical altimetry measurements were collected using airborne light detection and ranging (lidar) by TerrainVision. The active microwave data include radar observations from the NASA Airborne Synthetic Aperture Radar (AIRSAR), the Jet Propulsion Laboratory’s Polarimetric Ku-band Scatterometer (POLSCAT), and airborne GPS bistatic radar data collected with the NASA GPS radar delay mapping receiver (DMR). The passive microwave data consist of observations collected with the NOAA Polarimetric Scanning Radiometer (PSR). All of the airborne datasets described here and more information describing data collection and processing are available online.

Full access
Janet Hardy, Robert Davis, Yeohoon Koh, Don Cline, Kelly Elder, Richard Armstrong, Hans-Peter Marshall, Thomas Painter, Gilles Castres Saint-Martin, Roger DeRoo, Kamal Sarabandi, Tobias Graf, Toshio Koike, and Kyle McDonald

Abstract

The local scale observation site (LSOS) is the smallest study site (0.8 ha) of the 2002/03 Cold Land Processes Experiment (CLPX) and is located within the Fraser mesocell study area. It was the most intensively measured site of the CLPX, and measurements here had the greatest temporal component of all CLPX sites. Measurements made at the LSOS were designed to produce a comprehensive assessment of the snow, soil, and vegetation characteristics viewed by the ground-based remote sensing instruments. The objective of the ground-based microwave remote sensing was to collect time series of active and passive microwave spectral signatures over snow, soil, and forest, which is coincident with the intensive physical characterization of these features. Ground-based remote sensing instruments included frequency modulated continuous wave (FMCW) radars operating over multiple microwave bandwidths; the Ground-Based Microwave Radiometer (GBMR-7) operating at channels 18.7, 23.8, 36.5, and 89 GHz; and in 2003, an L-, C-, X- and Ku-band scatterometer radar system. Snow and soil measurements included standard snow physical properties, snow wetness, snow depth transects, and soil moisture. The stem and canopy temperature and xylem sap flux of several trees were monitored continuously. Five micrometeorological towers monitored ambient conditions and provided forcing datasets for 1D snow and soil models. Arrays of pyranometers (0.3–3 μm) and a scanning thermal radiometer (8–12 μm) characterized the variability of radiative receipt in the forests. A field spectroradiometer measured the hyperspectral hemispherical-directional reflectance of the snow surface. These measurements, together with the ground-based remote sensing, provide the framework for evaluating and improving microwave radiative transfer models and coupling them to land surface models. The dataset is archived at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado.

Full access