Search Results
You are looking at 1 - 7 of 7 items for
- Author or Editor: Donald J. Wuebbles x
- Refine by Access: All Content x
Abstract
The ability of coupled atmosphere–ocean general circulation models (AOGCMs) to simulate variability in regional and global atmospheric dynamics is an important aspect of model evaluation. This is particularly true for recurring large-scale patterns known to be correlated with surface climate anomalies. Here, the authors evaluate the ability of all Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) historical Twentieth-Century Climate in Coupled Models (20C3M) AOGCM simulations for which the required output fields are available to simulate three patterns of large-scale atmospheric internal variability in the North Atlantic region: the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), and the Atlantic multidecadal oscillation (AMO); and three in the North Pacific region: the El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), and the Pacific–North American Oscillation (PNA). These patterns are evaluated in two ways: first, in terms of their characteristic temporal variability and second, in terms of their magnitude and spatial locations.
It is found that historical total-forcing simulations from many of the AOGCMs produce seasonal spatial patterns that clearly resemble the teleconnection patterns resulting from identical calculation methods applied to reanalysis and/or observed fields such as the 40-yr ECMWF Re-Analysis, NCEP–NCAR, or Kaplan sea surface temperatures (SSTs), with the exception of the lowest-frequency pattern, AMO, which is only reproduced by a few models. AOGCM simulations also show some significant biases in both spatial and temporal characteristics of the six patterns. Many models tend to either under- or overestimate the strength of the spatial patterns and exhibit rotation about the polar region or east–west displacement. Based on spectral analysis of the time series of each index, models also appear to vary in their ability to simulate the temporal variability of the teleconnection patterns, with some models producing oscillations that are too fast and others that are too slow relative to those observed. A few models produce a signal that is too periodic, most likely because of a failure to adequately simulate the natural chaotic behavior of the atmosphere. These results have implications for the selection and use of specific AOGCMs to simulate climate over the Northern Hemisphere, with some models being clearly more successful at (i.e., displaying less bias in) simulating large-scale, low-frequency patterns of temporal and spatial variability over the North Atlantic and Pacific regions relative to others.
Abstract
The ability of coupled atmosphere–ocean general circulation models (AOGCMs) to simulate variability in regional and global atmospheric dynamics is an important aspect of model evaluation. This is particularly true for recurring large-scale patterns known to be correlated with surface climate anomalies. Here, the authors evaluate the ability of all Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) historical Twentieth-Century Climate in Coupled Models (20C3M) AOGCM simulations for which the required output fields are available to simulate three patterns of large-scale atmospheric internal variability in the North Atlantic region: the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), and the Atlantic multidecadal oscillation (AMO); and three in the North Pacific region: the El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), and the Pacific–North American Oscillation (PNA). These patterns are evaluated in two ways: first, in terms of their characteristic temporal variability and second, in terms of their magnitude and spatial locations.
It is found that historical total-forcing simulations from many of the AOGCMs produce seasonal spatial patterns that clearly resemble the teleconnection patterns resulting from identical calculation methods applied to reanalysis and/or observed fields such as the 40-yr ECMWF Re-Analysis, NCEP–NCAR, or Kaplan sea surface temperatures (SSTs), with the exception of the lowest-frequency pattern, AMO, which is only reproduced by a few models. AOGCM simulations also show some significant biases in both spatial and temporal characteristics of the six patterns. Many models tend to either under- or overestimate the strength of the spatial patterns and exhibit rotation about the polar region or east–west displacement. Based on spectral analysis of the time series of each index, models also appear to vary in their ability to simulate the temporal variability of the teleconnection patterns, with some models producing oscillations that are too fast and others that are too slow relative to those observed. A few models produce a signal that is too periodic, most likely because of a failure to adequately simulate the natural chaotic behavior of the atmosphere. These results have implications for the selection and use of specific AOGCMs to simulate climate over the Northern Hemisphere, with some models being clearly more successful at (i.e., displaying less bias in) simulating large-scale, low-frequency patterns of temporal and spatial variability over the North Atlantic and Pacific regions relative to others.
Abstract
In this study the vertical convergence of the eddy heat flux, found as a forcing term in the thermodynamic energy equation of the transformed Eulerian mean formulation, is estimated in the troposphere and in the lower stratosphere from climatalogical data. Results show that while the heating rates caused by these eddy effects are small in the stratosphere they may play an important role in tropospheric circulation. The eddy-caused additions to the forcing field are seen as a region of significant cooling in the midaltitudes at the midtroposphere level and of weak heating throughout the tropical region. This net global cooling is important in balancing net global heating. In addition, the heating due to meridional heat flux is found to dominate compared to heating due to the vertical heat flux. To study circulation changes, the residual mean circulation is calculated with and without the estimated eddy heating effects. The added forcing causes additional circulation in each hemisphere that coincides with the primary circulation due to zonal-mean diabatic heating. Therefore, the eddy heat flux convergence has a significant role in enhancing the zonal-mean residual circulation in the troposphere.
Abstract
In this study the vertical convergence of the eddy heat flux, found as a forcing term in the thermodynamic energy equation of the transformed Eulerian mean formulation, is estimated in the troposphere and in the lower stratosphere from climatalogical data. Results show that while the heating rates caused by these eddy effects are small in the stratosphere they may play an important role in tropospheric circulation. The eddy-caused additions to the forcing field are seen as a region of significant cooling in the midaltitudes at the midtroposphere level and of weak heating throughout the tropical region. This net global cooling is important in balancing net global heating. In addition, the heating due to meridional heat flux is found to dominate compared to heating due to the vertical heat flux. To study circulation changes, the residual mean circulation is calculated with and without the estimated eddy heating effects. The added forcing causes additional circulation in each hemisphere that coincides with the primary circulation due to zonal-mean diabatic heating. Therefore, the eddy heat flux convergence has a significant role in enhancing the zonal-mean residual circulation in the troposphere.
Abstract
Future projections of near-surface ozone concentrations depend on the climate/emissions scenario used to drive future simulations, the direct effects of the changing climate on the atmosphere, and the indirect effects of changing temperatures and CO2 levels on biogenic ozone precursor emissions. The authors investigate the influence of these factors on potential future changes in summertime daily 8-h maximum ozone over the United States and China by comparing Model for Ozone and Related Chemical Tracers, version 2.4, (MOZART-2.4) simulations for the period 1996–2000 with 2095–99, using climate projections from NCAR–Department of Energy Parallel Climate Model simulations driven by the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios A1fi (higher) and B1 (lower) emission scenarios, with corresponding changes in biogenic emissions. The effect of projected climate changes alone on surface ozone is generally less than 3 ppb over most regions. Regional ozone increases and decreases are driven mainly by local warming and marine air dilution enhancement, respectively. Changes are approximately the same magnitude under both scenarios, although spatial patterns of responses differ. Projected increases in isoprene emissions (32%–94% over both countries), however, result in significantly greater changes in surface ozone. Increases of 1–15 ppb are found under A1fi and of 0–7 ppb are found under B1. These increases not only raise the frequency of “high ozone days,” but are also projected to occur nearly uniformly across the distribution of daily ozone maxima. Thus, projected future ozone changes appear to be more sensitive to changes in biogenic emissions than to direct climate changes, and the spatial patterns and magnitude of future ozone changes depend strongly on the future emissions scenarios used.
Abstract
Future projections of near-surface ozone concentrations depend on the climate/emissions scenario used to drive future simulations, the direct effects of the changing climate on the atmosphere, and the indirect effects of changing temperatures and CO2 levels on biogenic ozone precursor emissions. The authors investigate the influence of these factors on potential future changes in summertime daily 8-h maximum ozone over the United States and China by comparing Model for Ozone and Related Chemical Tracers, version 2.4, (MOZART-2.4) simulations for the period 1996–2000 with 2095–99, using climate projections from NCAR–Department of Energy Parallel Climate Model simulations driven by the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios A1fi (higher) and B1 (lower) emission scenarios, with corresponding changes in biogenic emissions. The effect of projected climate changes alone on surface ozone is generally less than 3 ppb over most regions. Regional ozone increases and decreases are driven mainly by local warming and marine air dilution enhancement, respectively. Changes are approximately the same magnitude under both scenarios, although spatial patterns of responses differ. Projected increases in isoprene emissions (32%–94% over both countries), however, result in significantly greater changes in surface ozone. Increases of 1–15 ppb are found under A1fi and of 0–7 ppb are found under B1. These increases not only raise the frequency of “high ozone days,” but are also projected to occur nearly uniformly across the distribution of daily ozone maxima. Thus, projected future ozone changes appear to be more sensitive to changes in biogenic emissions than to direct climate changes, and the spatial patterns and magnitude of future ozone changes depend strongly on the future emissions scenarios used.
The state of knowledge regarding trends and an understanding of their causes is presented for a specific subset of extreme weather and climate types. For severe convective storms (tornadoes, hailstorms, and severe thunderstorms), differences in time and space of practices of collecting reports of events make using the reporting database to detect trends extremely difficult. Overall, changes in the frequency of environments favorable for severe thunderstorms have not been statistically significant. For extreme precipitation, there is strong evidence for a nationally averaged upward trend in the frequency and intensity of events. The causes of the observed trends have not been determined with certainty, although there is evidence that increasing atmospheric water vapor may be one factor. For hurricanes and typhoons, robust detection of trends in Atlantic and western North Pacific tropical cyclone (TC) activity is significantly constrained by data heterogeneity and deficient quantification of internal variability. Attribution of past TC changes is further challenged by a lack of consensus on the physical link- ages between climate forcing and TC activity. As a result, attribution of trends to anthropogenic forcing remains controversial. For severe snowstorms and ice storms, the number of severe regional snowstorms that occurred since 1960 was more than twice that of the preceding 60 years. There are no significant multidecadal trends in the areal percentage of the contiguous United States impacted by extreme seasonal snowfall amounts since 1900. There is no distinguishable trend in the frequency of ice storms for the United States as a whole since 1950.
The state of knowledge regarding trends and an understanding of their causes is presented for a specific subset of extreme weather and climate types. For severe convective storms (tornadoes, hailstorms, and severe thunderstorms), differences in time and space of practices of collecting reports of events make using the reporting database to detect trends extremely difficult. Overall, changes in the frequency of environments favorable for severe thunderstorms have not been statistically significant. For extreme precipitation, there is strong evidence for a nationally averaged upward trend in the frequency and intensity of events. The causes of the observed trends have not been determined with certainty, although there is evidence that increasing atmospheric water vapor may be one factor. For hurricanes and typhoons, robust detection of trends in Atlantic and western North Pacific tropical cyclone (TC) activity is significantly constrained by data heterogeneity and deficient quantification of internal variability. Attribution of past TC changes is further challenged by a lack of consensus on the physical link- ages between climate forcing and TC activity. As a result, attribution of trends to anthropogenic forcing remains controversial. For severe snowstorms and ice storms, the number of severe regional snowstorms that occurred since 1960 was more than twice that of the preceding 60 years. There are no significant multidecadal trends in the areal percentage of the contiguous United States impacted by extreme seasonal snowfall amounts since 1900. There is no distinguishable trend in the frequency of ice storms for the United States as a whole since 1950.
Weather and climate extremes have been varying and changing on many different time scales. In recent decades, heat waves have generally become more frequent across the United States, while cold waves have been decreasing. While this is in keeping with expectations in a warming climate, it turns out that decadal variations in the number of U.S. heat and cold waves do not correlate well with the observed U.S. warming during the last century. Annual peak flow data reveal that river flooding trends on the century scale do not show uniform changes across the country. While flood magnitudes in the Southwest have been decreasing, flood magnitudes in the Northeast and north-central United States have been increasing. Confounding the analysis of trends in river flooding is multiyear and even multidecadal variability likely caused by both large-scale atmospheric circulation changes and basin-scale “memory” in the form of soil moisture. Droughts also have long-term trends as well as multiyear and decadal variability. Instrumental data indicate that the Dust Bowl of the 1930s and the drought in the 1950s were the most significant twentieth-century droughts in the United States, while tree ring data indicate that the megadroughts over the twelfth century exceeded anything in the twentieth century in both spatial extent and duration. The state of knowledge of the factors that cause heat waves, cold waves, floods, and drought to change is fairly good with heat waves being the best understood.
Weather and climate extremes have been varying and changing on many different time scales. In recent decades, heat waves have generally become more frequent across the United States, while cold waves have been decreasing. While this is in keeping with expectations in a warming climate, it turns out that decadal variations in the number of U.S. heat and cold waves do not correlate well with the observed U.S. warming during the last century. Annual peak flow data reveal that river flooding trends on the century scale do not show uniform changes across the country. While flood magnitudes in the Southwest have been decreasing, flood magnitudes in the Northeast and north-central United States have been increasing. Confounding the analysis of trends in river flooding is multiyear and even multidecadal variability likely caused by both large-scale atmospheric circulation changes and basin-scale “memory” in the form of soil moisture. Droughts also have long-term trends as well as multiyear and decadal variability. Instrumental data indicate that the Dust Bowl of the 1930s and the drought in the 1950s were the most significant twentieth-century droughts in the United States, while tree ring data indicate that the megadroughts over the twelfth century exceeded anything in the twentieth century in both spatial extent and duration. The state of knowledge of the factors that cause heat waves, cold waves, floods, and drought to change is fairly good with heat waves being the best understood.
This scientific assessment examines changes in three climate extremes—extratropical storms, winds, and waves—with an emphasis on U.S. coastal regions during the cold season. There is moderate evidence of an increase in both extratropical storm frequency and intensity during the cold season in the Northern Hemisphere since 1950, with suggestive evidence of geographic shifts resulting in slight upward trends in offshore/coastal regions. There is also suggestive evidence of an increase in extreme winds (at least annually) over parts of the ocean since the early to mid-1980s, but the evidence over the U.S. land surface is inconclusive. Finally, there is moderate evidence of an increase in extreme waves in winter along the Pacific coast since the 1950s, but along other U.S. shorelines any tendencies are of modest magnitude compared with historical variability. The data for extratropical cyclones are considered to be of relatively high quality for trend detection, whereas the data for extreme winds and waves are judged to be of intermediate quality. In terms of physical causes leading to multidecadal changes, the level of understanding for both extratropical storms and extreme winds is considered to be relatively low, while that for extreme waves is judged to be intermediate. Since the ability to measure these changes with some confidence is relatively recent, understanding is expected to improve in the future for a variety of reasons, including increased periods of record and the development of “climate reanalysis” projects.
This scientific assessment examines changes in three climate extremes—extratropical storms, winds, and waves—with an emphasis on U.S. coastal regions during the cold season. There is moderate evidence of an increase in both extratropical storm frequency and intensity during the cold season in the Northern Hemisphere since 1950, with suggestive evidence of geographic shifts resulting in slight upward trends in offshore/coastal regions. There is also suggestive evidence of an increase in extreme winds (at least annually) over parts of the ocean since the early to mid-1980s, but the evidence over the U.S. land surface is inconclusive. Finally, there is moderate evidence of an increase in extreme waves in winter along the Pacific coast since the 1950s, but along other U.S. shorelines any tendencies are of modest magnitude compared with historical variability. The data for extratropical cyclones are considered to be of relatively high quality for trend detection, whereas the data for extreme winds and waves are judged to be of intermediate quality. In terms of physical causes leading to multidecadal changes, the level of understanding for both extratropical storms and extreme winds is considered to be relatively low, while that for extreme waves is judged to be intermediate. Since the ability to measure these changes with some confidence is relatively recent, understanding is expected to improve in the future for a variety of reasons, including increased periods of record and the development of “climate reanalysis” projects.