Search Results
You are looking at 1 - 5 of 5 items for
- Author or Editor: Donald L. Kelly x
- Refine by Access: All Content x
Abstract
While the climatology of excessive rain and tornadoes is well-documented, little is known of storms that produce high winds or large hail. The characteristics of the approximately 75 000 severe thunderstorms which occurred in the United States from 1955 through 1983 are analyzed in an attempt to rectify this situation.
The distribution of over 29 000 storms causing hail larger than 19 mm shows marked diurnal, seasonal, and geographic preferences. These storms occur most frequently during the midafternoon hours of May and June in a zone running from central Texas to Nebraska. Spring storms tend to occur south of the Kansas-Nebraska border and summer storms north of it.
Thunderstorm winds which produce either “structural” damage or are reported as faster than 25.8 m s−1 generated about 46 000 reports. These storms typically occur during midafternoon in June and July. While the geographic distribution of violent windstorms is similar to that hailstorms, a zone of weaker severe thunderstorm gusts lies from northern Iowa to central Ohio. During May, windstorms are predominant across the plains area, but by August thew storms are indigenous only to the northern Midwest.
Abstract
While the climatology of excessive rain and tornadoes is well-documented, little is known of storms that produce high winds or large hail. The characteristics of the approximately 75 000 severe thunderstorms which occurred in the United States from 1955 through 1983 are analyzed in an attempt to rectify this situation.
The distribution of over 29 000 storms causing hail larger than 19 mm shows marked diurnal, seasonal, and geographic preferences. These storms occur most frequently during the midafternoon hours of May and June in a zone running from central Texas to Nebraska. Spring storms tend to occur south of the Kansas-Nebraska border and summer storms north of it.
Thunderstorm winds which produce either “structural” damage or are reported as faster than 25.8 m s−1 generated about 46 000 reports. These storms typically occur during midafternoon in June and July. While the geographic distribution of violent windstorms is similar to that hailstorms, a zone of weaker severe thunderstorm gusts lies from northern Iowa to central Ohio. During May, windstorms are predominant across the plains area, but by August thew storms are indigenous only to the northern Midwest.
Abstract
One of the principle applications of climatological tornado data is in tornado-hazard assessment. To perform such a hazard-potential determination, historical tornado characteristics in either a regional or tom area are complied. A model is then used to determine a site-specific point probability of a tornado greater than a specified intensity occurring. Various models require different climatological input. However, a knowledge of the mean values of tornado track width, tornado track width, tornado affected area and tornado occurrence rate as both a function of tornado intensity and geographic area, along with a violence frequency distribution, enable Mod of the models to be applied.
The NSSFC-NRC tornado data base is used to supply input for the determination of these parameters over the United States. This climatic data base has undergone extensive updating and quality control since it was last reported. For track parameters, internally redundant data were used to cheek consistency. Further, reports which derivated significantly from the mean wore individually checked. Intensity data have been compared with the University of Chicago DAPPLE tornado base. All tornadoes whose recorded intensifies differed by more than one category were reclassified by an independent scientist so that the two data sets are consistent.
Abstract
One of the principle applications of climatological tornado data is in tornado-hazard assessment. To perform such a hazard-potential determination, historical tornado characteristics in either a regional or tom area are complied. A model is then used to determine a site-specific point probability of a tornado greater than a specified intensity occurring. Various models require different climatological input. However, a knowledge of the mean values of tornado track width, tornado track width, tornado affected area and tornado occurrence rate as both a function of tornado intensity and geographic area, along with a violence frequency distribution, enable Mod of the models to be applied.
The NSSFC-NRC tornado data base is used to supply input for the determination of these parameters over the United States. This climatic data base has undergone extensive updating and quality control since it was last reported. For track parameters, internally redundant data were used to cheek consistency. Further, reports which derivated significantly from the mean wore individually checked. Intensity data have been compared with the University of Chicago DAPPLE tornado base. All tornadoes whose recorded intensifies differed by more than one category were reclassified by an independent scientist so that the two data sets are consistent.
Abstract
Beijing, People's Republic of China, and Topeka, Kansas, United States of America, are located at approximately the same latitude and are affected by similar synoptic weather patterns. However, their thunderstorm climatology differs significantly. Rowinsonde data from the two stations are compared. It is found that the typical distribution of the oceanic subtropical high pressure areas subtly modifies the synoptic scale environment accounting for the observed differences.
Abstract
Beijing, People's Republic of China, and Topeka, Kansas, United States of America, are located at approximately the same latitude and are affected by similar synoptic weather patterns. However, their thunderstorm climatology differs significantly. Rowinsonde data from the two stations are compared. It is found that the typical distribution of the oceanic subtropical high pressure areas subtly modifies the synoptic scale environment accounting for the observed differences.
Abstract
This paper describes the Local Analysis and Prediction System (LAPS) and the 20-km horizontal grid version of the Rapid Update Cycle (RUC20) atmospheric analyses datasets, which are available as part of the Cold Land Processes Field Experiment (CLPX) data archive. The LAPS dataset contains spatially and temporally continuous atmospheric and surface variables over Colorado, Wyoming, and parts of the surrounding states. The analysis used a 10-km horizontal grid with 21 vertical levels and an hourly temporal resolution. The LAPS archive includes forty-six 1D surface fields and nine 3D upper-air fields, spanning the period 1 September 2001 through 31 August 2003. The RUC20 dataset includes hourly 3D atmospheric analyses over the contiguous United States and parts of southern Canada and northern Mexico, with 50 vertical levels. The RUC20 archive contains forty-six 1D surface fields and fourteen 3D upper-air fields, spanning the period 1 October 2002 through 31 September 2003. The datasets are archived at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado.
Abstract
This paper describes the Local Analysis and Prediction System (LAPS) and the 20-km horizontal grid version of the Rapid Update Cycle (RUC20) atmospheric analyses datasets, which are available as part of the Cold Land Processes Field Experiment (CLPX) data archive. The LAPS dataset contains spatially and temporally continuous atmospheric and surface variables over Colorado, Wyoming, and parts of the surrounding states. The analysis used a 10-km horizontal grid with 21 vertical levels and an hourly temporal resolution. The LAPS archive includes forty-six 1D surface fields and nine 3D upper-air fields, spanning the period 1 September 2001 through 31 August 2003. The RUC20 dataset includes hourly 3D atmospheric analyses over the contiguous United States and parts of southern Canada and northern Mexico, with 50 vertical levels. The RUC20 archive contains forty-six 1D surface fields and fourteen 3D upper-air fields, spanning the period 1 October 2002 through 31 September 2003. The datasets are archived at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado.
The state of knowledge regarding trends and an understanding of their causes is presented for a specific subset of extreme weather and climate types. For severe convective storms (tornadoes, hailstorms, and severe thunderstorms), differences in time and space of practices of collecting reports of events make using the reporting database to detect trends extremely difficult. Overall, changes in the frequency of environments favorable for severe thunderstorms have not been statistically significant. For extreme precipitation, there is strong evidence for a nationally averaged upward trend in the frequency and intensity of events. The causes of the observed trends have not been determined with certainty, although there is evidence that increasing atmospheric water vapor may be one factor. For hurricanes and typhoons, robust detection of trends in Atlantic and western North Pacific tropical cyclone (TC) activity is significantly constrained by data heterogeneity and deficient quantification of internal variability. Attribution of past TC changes is further challenged by a lack of consensus on the physical link- ages between climate forcing and TC activity. As a result, attribution of trends to anthropogenic forcing remains controversial. For severe snowstorms and ice storms, the number of severe regional snowstorms that occurred since 1960 was more than twice that of the preceding 60 years. There are no significant multidecadal trends in the areal percentage of the contiguous United States impacted by extreme seasonal snowfall amounts since 1900. There is no distinguishable trend in the frequency of ice storms for the United States as a whole since 1950.
The state of knowledge regarding trends and an understanding of their causes is presented for a specific subset of extreme weather and climate types. For severe convective storms (tornadoes, hailstorms, and severe thunderstorms), differences in time and space of practices of collecting reports of events make using the reporting database to detect trends extremely difficult. Overall, changes in the frequency of environments favorable for severe thunderstorms have not been statistically significant. For extreme precipitation, there is strong evidence for a nationally averaged upward trend in the frequency and intensity of events. The causes of the observed trends have not been determined with certainty, although there is evidence that increasing atmospheric water vapor may be one factor. For hurricanes and typhoons, robust detection of trends in Atlantic and western North Pacific tropical cyclone (TC) activity is significantly constrained by data heterogeneity and deficient quantification of internal variability. Attribution of past TC changes is further challenged by a lack of consensus on the physical link- ages between climate forcing and TC activity. As a result, attribution of trends to anthropogenic forcing remains controversial. For severe snowstorms and ice storms, the number of severe regional snowstorms that occurred since 1960 was more than twice that of the preceding 60 years. There are no significant multidecadal trends in the areal percentage of the contiguous United States impacted by extreme seasonal snowfall amounts since 1900. There is no distinguishable trend in the frequency of ice storms for the United States as a whole since 1950.