Search Results
You are looking at 1 - 10 of 38 items for
- Author or Editor: Dongxiao Wang x
- Refine by Access: All Content x
Abstract
In this study, an enhanced footprint of the interdecadal Pacific oscillation (IPO) on the upper-ocean heat content (OHC) in the South China Sea (SCS) since the 1990s is revealed. The negative OHC–IPO correlation is significant (r = −0.71) during 1990–2010 [period 2 (P2)], whereas it is statistically insignificant during 1960–80 [period 1 (P1)]. Analyses show that the scope of the equatorial Pacific wind anomalies is wider during P2 compared with that during P1 due to a larger east–west SST gradient and enhanced tropical warming in the Indian Ocean. When the IPO is negative during P2, a wider scope of the wind stress anomalies associated with the IPO could lead to 1) the southward migration of the North Equatorial Current bifurcation latitude (NECBL) by affecting the wind stress curl over the key region where it is near the climatological NECBL and 2) an increase in the interbasin pressure gradient (sea surface height difference) between the western Pacific and the SCS; these two processes strengthen the Kuroshio and weaken the Luzon Strait transport (LST) or SCS throughflow into the SCS. Also, 3) the equatorial Pacific wind anomalies are wide enough to directly weaken the LST in the SCS through the “island rule.” These three pathways finally change the oceanic gyre in the SCS and increase the OHC. Our results suggest that the scope of the tropical wind stress is the crucial factor when we consider the relationship between the upper ocean thermal conditions in the SCS and the Pacific variability.
Abstract
In this study, an enhanced footprint of the interdecadal Pacific oscillation (IPO) on the upper-ocean heat content (OHC) in the South China Sea (SCS) since the 1990s is revealed. The negative OHC–IPO correlation is significant (r = −0.71) during 1990–2010 [period 2 (P2)], whereas it is statistically insignificant during 1960–80 [period 1 (P1)]. Analyses show that the scope of the equatorial Pacific wind anomalies is wider during P2 compared with that during P1 due to a larger east–west SST gradient and enhanced tropical warming in the Indian Ocean. When the IPO is negative during P2, a wider scope of the wind stress anomalies associated with the IPO could lead to 1) the southward migration of the North Equatorial Current bifurcation latitude (NECBL) by affecting the wind stress curl over the key region where it is near the climatological NECBL and 2) an increase in the interbasin pressure gradient (sea surface height difference) between the western Pacific and the SCS; these two processes strengthen the Kuroshio and weaken the Luzon Strait transport (LST) or SCS throughflow into the SCS. Also, 3) the equatorial Pacific wind anomalies are wide enough to directly weaken the LST in the SCS through the “island rule.” These three pathways finally change the oceanic gyre in the SCS and increase the OHC. Our results suggest that the scope of the tropical wind stress is the crucial factor when we consider the relationship between the upper ocean thermal conditions in the SCS and the Pacific variability.
Abstract
The present study employs six surface heat flux datasets and three ocean assimilation products to assess the relative contributions of surface heat fluxes and oceanic processes to the sea surface temperature (SST) change in the tropical oceans. Large differences are identified in the major terms of the heat budget equation. The largest discrepancies among different datasets appear in the contribution of vertical advection. The heat budget is nearly balanced in the shortwave-radiation- and horizontal-advection-dominant cases but not balanced in some of the latent-heat-flux- and vertical-advection-dominant cases. The contributions of surface heat fluxes and ocean advections to the SST tendency display remarkable seasonal and regional dependence. The contribution of surface heat fluxes covers a large geographical area. The oceanic processes dominate the SST tendency in the near-equatorial regions with large values but small spatial scales. In the Pacific and Atlantic Oceans, the SST tendency is governed by the dynamic and thermodynamic processes, respectively, while a wide variety of processes contribute to the SST tendency in the Indian Ocean. Several regions have been selected to illustrate the dominant contributions of individual terms to the SST tendency in different seasons. The seasonality and regionality of the interannual air–sea relationship indicate a physical connection with the mean state.
Abstract
The present study employs six surface heat flux datasets and three ocean assimilation products to assess the relative contributions of surface heat fluxes and oceanic processes to the sea surface temperature (SST) change in the tropical oceans. Large differences are identified in the major terms of the heat budget equation. The largest discrepancies among different datasets appear in the contribution of vertical advection. The heat budget is nearly balanced in the shortwave-radiation- and horizontal-advection-dominant cases but not balanced in some of the latent-heat-flux- and vertical-advection-dominant cases. The contributions of surface heat fluxes and ocean advections to the SST tendency display remarkable seasonal and regional dependence. The contribution of surface heat fluxes covers a large geographical area. The oceanic processes dominate the SST tendency in the near-equatorial regions with large values but small spatial scales. In the Pacific and Atlantic Oceans, the SST tendency is governed by the dynamic and thermodynamic processes, respectively, while a wide variety of processes contribute to the SST tendency in the Indian Ocean. Several regions have been selected to illustrate the dominant contributions of individual terms to the SST tendency in different seasons. The seasonality and regionality of the interannual air–sea relationship indicate a physical connection with the mean state.
Abstract
This study investigates the causes of severe ice conditions over the Bohai Sea, China, and mild ice cover over the North American Great Lakes under the same hemispheric climate patterns during the 2009/10 winter with a strong negative Arctic Oscillation (AO) and an El Niño event. The main cause of severe ice cover over the Bohai Sea was the strong negative AO. Six of seven winters with severe ice were associated with a strong negative AO during the period 1954–2010. The Siberian high (SH) in the 2009/10 winter was close to normal. The influence of El Niño on the Bohai Sea was not significant. In contrast, the mild ice conditions in the Great Lakes were mainly caused by the strong El Niño event. Although the negative AO generally produces significant colder surface air temperature (SAT) and heavy ice cover over the Great Lakes, when it coincided with a strong El Niño event during the 2009/10 winter the El Niño–induced Pacific–North America (PNA)-like pattern dominated the midlatitudes and was responsible for the flattening of the ridge–trough system over North America, leading to warmer-than-normal temperatures and mild ice conditions over the Great Lakes. This comparative study revealed that interannual variability of SAT in North America, including the Great Lakes, is effectively influenced by El Niño events through a PNA or PNA-like pattern whereas the interannual variability of SAT in northeastern China, including the Bohai Sea area, was mainly controlled by AO and SH.
Abstract
This study investigates the causes of severe ice conditions over the Bohai Sea, China, and mild ice cover over the North American Great Lakes under the same hemispheric climate patterns during the 2009/10 winter with a strong negative Arctic Oscillation (AO) and an El Niño event. The main cause of severe ice cover over the Bohai Sea was the strong negative AO. Six of seven winters with severe ice were associated with a strong negative AO during the period 1954–2010. The Siberian high (SH) in the 2009/10 winter was close to normal. The influence of El Niño on the Bohai Sea was not significant. In contrast, the mild ice conditions in the Great Lakes were mainly caused by the strong El Niño event. Although the negative AO generally produces significant colder surface air temperature (SAT) and heavy ice cover over the Great Lakes, when it coincided with a strong El Niño event during the 2009/10 winter the El Niño–induced Pacific–North America (PNA)-like pattern dominated the midlatitudes and was responsible for the flattening of the ridge–trough system over North America, leading to warmer-than-normal temperatures and mild ice conditions over the Great Lakes. This comparative study revealed that interannual variability of SAT in North America, including the Great Lakes, is effectively influenced by El Niño events through a PNA or PNA-like pattern whereas the interannual variability of SAT in northeastern China, including the Bohai Sea area, was mainly controlled by AO and SH.
Abstract
Upwelling brings deep, cold, and nutrient-rich water to the euphotic zone, enhancing biological primary productivity. Coastal upwelling is affected by various factors, such as winds, topography, and tides. However, it remains unclear how the upwelling is affected by surface waves, particularly the Stokes drift and its related forces, that is, conservative wave effects. Here using a coupled wave–circulation model, we examined how conservative wave effects impact the wind-driven coastal upwelling system over an idealized continental shelf. We showed that conservative wave effects reduce upwelling but enhance downwelling; consequently, the amount of deep cold water brought up to the surface by upwelling is reduced with waves, leading to a weaker upwelling front than that without waves. Conservative wave effects also change the potential vorticity (PV) fluxes across the sea surface/bottom and alter the thickness of surface/bottom negative-PV layers. In addition, conservative wave effects modify the turbulent thermal wind (TTW) associated with the upwelling front, forming a Stokes–TTW balance. Further, we studied sensitivities of the upwelling and downwelling magnitudes to four parameters: wave height, wind stress, shelf slope, and wave incident angle. We combined these parameters into a single nondimensional number that can indicate when conservative wave effects need to be included in the upwelling and downwelling.
Significance Statement
Upwelling is important to the marine ecosystem because it enhances biological primary productivity by bringing nutrient-rich water to the euphotic zone from depths. However, it remains unclear how the upwelling is affected by ubiquitous surface waves. Here using numerical simulations, we showed that Stokes drift and its related forces due to surface waves reduce upwelling but enhance downwelling. It implies that there could be a substantial bias in the estimation of upwelling and downwelling if surface waves are not considered. Further, we proposed a nondimensional number to indicate when surface waves need to be considered in the upwelling and downwelling.
Abstract
Upwelling brings deep, cold, and nutrient-rich water to the euphotic zone, enhancing biological primary productivity. Coastal upwelling is affected by various factors, such as winds, topography, and tides. However, it remains unclear how the upwelling is affected by surface waves, particularly the Stokes drift and its related forces, that is, conservative wave effects. Here using a coupled wave–circulation model, we examined how conservative wave effects impact the wind-driven coastal upwelling system over an idealized continental shelf. We showed that conservative wave effects reduce upwelling but enhance downwelling; consequently, the amount of deep cold water brought up to the surface by upwelling is reduced with waves, leading to a weaker upwelling front than that without waves. Conservative wave effects also change the potential vorticity (PV) fluxes across the sea surface/bottom and alter the thickness of surface/bottom negative-PV layers. In addition, conservative wave effects modify the turbulent thermal wind (TTW) associated with the upwelling front, forming a Stokes–TTW balance. Further, we studied sensitivities of the upwelling and downwelling magnitudes to four parameters: wave height, wind stress, shelf slope, and wave incident angle. We combined these parameters into a single nondimensional number that can indicate when conservative wave effects need to be included in the upwelling and downwelling.
Significance Statement
Upwelling is important to the marine ecosystem because it enhances biological primary productivity by bringing nutrient-rich water to the euphotic zone from depths. However, it remains unclear how the upwelling is affected by ubiquitous surface waves. Here using numerical simulations, we showed that Stokes drift and its related forces due to surface waves reduce upwelling but enhance downwelling. It implies that there could be a substantial bias in the estimation of upwelling and downwelling if surface waves are not considered. Further, we proposed a nondimensional number to indicate when surface waves need to be considered in the upwelling and downwelling.
Abstract
This study presents a novel mechanism for the generation of extreme El Niño events by analyzing interactions between tropical cyclones (TCs) in the western North Pacific (WNP) in spring [March–May (MAM)] and summer [June–August (JJA)] and sea surface warming in the eastern tropical Pacific. It is suggested that anomalously strong TCs in the WNP in MAM and JJA are essential for the formation of extreme El Niño events. MAM TCs excite considerable westerly wind bursts (WWBs) and facilitate the generation of El Niño events in late spring. The sea surface temperature (SST) in the central-eastern tropical Pacific increases prominently during the following summer, which is due to the warm water carried by downwelling Kelvin waves induced by the anomalous westerlies in the western tropical Pacific associated with the WNP TCs, as well as the lessening cold water upwelling resulting from the deepening thermocline in the eastern tropical Pacific. The developing El Niño in turn contributes to the TC activities over the southeastern quadrant of the WNP in summer, characterized by a stronger intensity, higher frequency, and longer duration. The resulting JJA TC-induced westerlies could further enhance the eastern tropical Pacific warm SST anomalies, and thus an extreme El Niño event tends to appear in the following autumn and winter. These physical processes are verified by several sets of atmosphere–ocean coupled model experiments.
Significance Statement
Tropical cyclone activity is one of the most destructive phenomena in the world. Extreme El Niño events can also cause devastating climate disasters. Understanding the relationship between these two events can help with disaster forecasting and prevention. This study finds that TC activity in the western North Pacific contributes to the appearance of extreme El Niño events. Abnormally active TC activity in spring can cause strong near-equatorial westerly wind anomalies, eastward transport of warm water from the western tropical Pacific, and a deepening ocean thermocline in the east, resulting in the earlier onset of El Niño events. Influenced by the El Niño event, the TC activity in summer is strengthened, which in turn continues to promote the surface warming of the central-eastern tropical Pacific, eventually resulting in extreme event occurrence.
Abstract
This study presents a novel mechanism for the generation of extreme El Niño events by analyzing interactions between tropical cyclones (TCs) in the western North Pacific (WNP) in spring [March–May (MAM)] and summer [June–August (JJA)] and sea surface warming in the eastern tropical Pacific. It is suggested that anomalously strong TCs in the WNP in MAM and JJA are essential for the formation of extreme El Niño events. MAM TCs excite considerable westerly wind bursts (WWBs) and facilitate the generation of El Niño events in late spring. The sea surface temperature (SST) in the central-eastern tropical Pacific increases prominently during the following summer, which is due to the warm water carried by downwelling Kelvin waves induced by the anomalous westerlies in the western tropical Pacific associated with the WNP TCs, as well as the lessening cold water upwelling resulting from the deepening thermocline in the eastern tropical Pacific. The developing El Niño in turn contributes to the TC activities over the southeastern quadrant of the WNP in summer, characterized by a stronger intensity, higher frequency, and longer duration. The resulting JJA TC-induced westerlies could further enhance the eastern tropical Pacific warm SST anomalies, and thus an extreme El Niño event tends to appear in the following autumn and winter. These physical processes are verified by several sets of atmosphere–ocean coupled model experiments.
Significance Statement
Tropical cyclone activity is one of the most destructive phenomena in the world. Extreme El Niño events can also cause devastating climate disasters. Understanding the relationship between these two events can help with disaster forecasting and prevention. This study finds that TC activity in the western North Pacific contributes to the appearance of extreme El Niño events. Abnormally active TC activity in spring can cause strong near-equatorial westerly wind anomalies, eastward transport of warm water from the western tropical Pacific, and a deepening ocean thermocline in the east, resulting in the earlier onset of El Niño events. Influenced by the El Niño event, the TC activity in summer is strengthened, which in turn continues to promote the surface warming of the central-eastern tropical Pacific, eventually resulting in extreme event occurrence.
Abstract
This study describes the development of the South China Sea (SCS) daily satellite-derived latent heat flux (SCSSLH) for the period of 1998–2011 at 0.25° × 0.25° resolution using data mainly from the Tropical Rain Measuring Mission (TRMM) Microwave Imager (TMI). Flux-related variables of daily TMI data smoothed with 3-day running mean were finally chosen because of the best fit with the 1727 high-quality observations from seven moored stations and 24 ship surveys. Near-surface air specific humidity was computed using the global relationship based on satellite precipitable water. Verification against 1016 high-resolution radiosonde profiles from 1998 to 2012 and the time series from the Xisha automatic weather station during 2008–10 indicate that this satellite-derived air specific humidity can reasonably capture observed mean condition and temporal variability. They are therefore used to derive SCSSLH based on the Coupled Ocean–Atmosphere Response Experiment version 3.0 (COARE 3.0) algorithm. Compared with five other latent heat flux products—the Goddard Satellite-Based Surface Turbulent Fluxes version 2 (GSSTF2), the objectively analyzed air–sea heat fluxes (OAFlux), the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data version 3 (HOAPS3), the National Centers for Environmental Prediction/Department of Energy Global Reanalysis 2 (NCEP-2), and the European Centre for Medium-Range Weather Forecasts (ECMWF)—the daily SCSSLH shows the highest spatial resolution and realistic values in the SCS, with an exception along the northern continental shelf. More importantly, the other five products seem to overestimate the latent heat flux systematically. The flux representation in this study comes not only with a better flux algorithm but also with the improved estimates of bulk variables based on in situ measurements, which further highlights the unique role of high-quality meteorological measurements and atmospheric weather stations in evaluating the air–sea interaction in the SCS.
Abstract
This study describes the development of the South China Sea (SCS) daily satellite-derived latent heat flux (SCSSLH) for the period of 1998–2011 at 0.25° × 0.25° resolution using data mainly from the Tropical Rain Measuring Mission (TRMM) Microwave Imager (TMI). Flux-related variables of daily TMI data smoothed with 3-day running mean were finally chosen because of the best fit with the 1727 high-quality observations from seven moored stations and 24 ship surveys. Near-surface air specific humidity was computed using the global relationship based on satellite precipitable water. Verification against 1016 high-resolution radiosonde profiles from 1998 to 2012 and the time series from the Xisha automatic weather station during 2008–10 indicate that this satellite-derived air specific humidity can reasonably capture observed mean condition and temporal variability. They are therefore used to derive SCSSLH based on the Coupled Ocean–Atmosphere Response Experiment version 3.0 (COARE 3.0) algorithm. Compared with five other latent heat flux products—the Goddard Satellite-Based Surface Turbulent Fluxes version 2 (GSSTF2), the objectively analyzed air–sea heat fluxes (OAFlux), the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data version 3 (HOAPS3), the National Centers for Environmental Prediction/Department of Energy Global Reanalysis 2 (NCEP-2), and the European Centre for Medium-Range Weather Forecasts (ECMWF)—the daily SCSSLH shows the highest spatial resolution and realistic values in the SCS, with an exception along the northern continental shelf. More importantly, the other five products seem to overestimate the latent heat flux systematically. The flux representation in this study comes not only with a better flux algorithm but also with the improved estimates of bulk variables based on in situ measurements, which further highlights the unique role of high-quality meteorological measurements and atmospheric weather stations in evaluating the air–sea interaction in the SCS.
Abstract
This study investigates changes in the frequency of ENSO, especially the prolonged 1990–95 El Niño event, in the context of secular changes in the annual cycle, ENSO interannual variability, and background mean state of the tropical eastern Pacific sea surface temperature (SST). The ensemble empirical mode decomposition (EEMD) method is applied to isolate those components from the Niño-3 SST index for the period 1880–2008. It is shown that the annual cycle [referred to as a refined modulated annual cycle (MAC)] has strong interannual modulation and secular change in both amplitude and phase: a clear transition from increasing to decreasing amplitude around 1947/48, with both linear trends before and after this turning point statistically significant and the amplitude decreasing by 14% since then, and a significant phase delay trend for the period 1881–1938, but hardly any thereafter. A clear transition from significant deceasing to increasing by about 30% in the amplitude of the ENSO interannual variability around 1937 is also found. When El Niño events are represented as the collective interannual variability, their frequency is found to be almost equivalent to that of La Niña events after 1976. A method for conducting synthetic experiments based on time series analysis further reveals that the apparent prolonged 1990–95 El Niño event was not caused solely by ENSO interannual variability. Rather, the 1991/92 warm period is attributable to an interannual variation superimposed by change in the background mean state; the 1993 warm period is attributable to change in the mean state; and the 1994/95 warm period is attributable to a residual annual cycle, which cannot be fully excluded by a 30-yr mean annual cycle approach. The impact that changing base periods has on the classification of ENSO events and possible solutions is also discussed.
Abstract
This study investigates changes in the frequency of ENSO, especially the prolonged 1990–95 El Niño event, in the context of secular changes in the annual cycle, ENSO interannual variability, and background mean state of the tropical eastern Pacific sea surface temperature (SST). The ensemble empirical mode decomposition (EEMD) method is applied to isolate those components from the Niño-3 SST index for the period 1880–2008. It is shown that the annual cycle [referred to as a refined modulated annual cycle (MAC)] has strong interannual modulation and secular change in both amplitude and phase: a clear transition from increasing to decreasing amplitude around 1947/48, with both linear trends before and after this turning point statistically significant and the amplitude decreasing by 14% since then, and a significant phase delay trend for the period 1881–1938, but hardly any thereafter. A clear transition from significant deceasing to increasing by about 30% in the amplitude of the ENSO interannual variability around 1937 is also found. When El Niño events are represented as the collective interannual variability, their frequency is found to be almost equivalent to that of La Niña events after 1976. A method for conducting synthetic experiments based on time series analysis further reveals that the apparent prolonged 1990–95 El Niño event was not caused solely by ENSO interannual variability. Rather, the 1991/92 warm period is attributable to an interannual variation superimposed by change in the background mean state; the 1993 warm period is attributable to change in the mean state; and the 1994/95 warm period is attributable to a residual annual cycle, which cannot be fully excluded by a 30-yr mean annual cycle approach. The impact that changing base periods has on the classification of ENSO events and possible solutions is also discussed.
Abstract
The refractivity from clutter (RFC) technique has been proved to be an effective way to estimate atmospheric duct structure. An important issue for RFC is how to make the estimate more robust, especially in range-dependent ducting conditions. Traditionally, statistical inversion methods need a large number of forward propagation model runs to obtain an acceptable result. Especially when the parameter search space is multidimensional, these methods are prone to being trapped into local optimal solutions. Recently published results (Zhao and Huang) indicate that the adjoint parabolic equation (PE) method holds promise for real-time estimation of one-dimensional refractive index structure from radar sea clutter returns. This paper is aimed at extending the adjoint PE method to range-dependent evaporation duct cases, with a log-linear relationship describing duct structures. Numerical simulations are used to test the performance of this method and the results are compared with that retrieved using a genetic algorithm. Both noise-free and 3-dB additive Gaussian noise clutter simulations are considered, as well as linearly and nonlinearly varying duct height with range.
Abstract
The refractivity from clutter (RFC) technique has been proved to be an effective way to estimate atmospheric duct structure. An important issue for RFC is how to make the estimate more robust, especially in range-dependent ducting conditions. Traditionally, statistical inversion methods need a large number of forward propagation model runs to obtain an acceptable result. Especially when the parameter search space is multidimensional, these methods are prone to being trapped into local optimal solutions. Recently published results (Zhao and Huang) indicate that the adjoint parabolic equation (PE) method holds promise for real-time estimation of one-dimensional refractive index structure from radar sea clutter returns. This paper is aimed at extending the adjoint PE method to range-dependent evaporation duct cases, with a log-linear relationship describing duct structures. Numerical simulations are used to test the performance of this method and the results are compared with that retrieved using a genetic algorithm. Both noise-free and 3-dB additive Gaussian noise clutter simulations are considered, as well as linearly and nonlinearly varying duct height with range.
Abstract
By analyzing in situ observations and conducting a series of ocean general circulation model experiments, this study investigates the physical processes controlling intraseasonal variability (ISV) of the Equatorial Undercurrent (EUC) of the Indian Ocean. ISV of the EUC leads to time-varying water exchanges between the western and eastern equatorial Indian Ocean. For the 2001–14 period, standard deviations of the EUC transport variability are 1.92 and 1.77 Sv (1 Sv ≡ 106 m3 s−1) in the eastern and western basins, respectively. The ISV of the EUC is predominantly caused by the wind forcing effect of atmospheric intraseasonal oscillations (ISOs) but through dramatically different ocean dynamical processes in the eastern and western basins. The stronger ISV in the eastern basin is dominated by the reflected Rossby waves associated with intraseasonal equatorial zonal wind forcing. It takes 20–30 days to set up an intraseasonal EUC anomaly through the Kelvin and Rossby waves associated with the first and second baroclinic modes. In the western basin, the peak intraseasonal EUC anomaly is generated by the zonal pressure gradient force, which is set up by radiating equatorial Kelvin and Rossby waves induced by the equatorial wind stress. Directly forced and reflected Rossby waves from the eastern basin propagate westward, contributing to intraseasonal zonal current near the surface but having weak impact on the peak ISV of the EUC.
Abstract
By analyzing in situ observations and conducting a series of ocean general circulation model experiments, this study investigates the physical processes controlling intraseasonal variability (ISV) of the Equatorial Undercurrent (EUC) of the Indian Ocean. ISV of the EUC leads to time-varying water exchanges between the western and eastern equatorial Indian Ocean. For the 2001–14 period, standard deviations of the EUC transport variability are 1.92 and 1.77 Sv (1 Sv ≡ 106 m3 s−1) in the eastern and western basins, respectively. The ISV of the EUC is predominantly caused by the wind forcing effect of atmospheric intraseasonal oscillations (ISOs) but through dramatically different ocean dynamical processes in the eastern and western basins. The stronger ISV in the eastern basin is dominated by the reflected Rossby waves associated with intraseasonal equatorial zonal wind forcing. It takes 20–30 days to set up an intraseasonal EUC anomaly through the Kelvin and Rossby waves associated with the first and second baroclinic modes. In the western basin, the peak intraseasonal EUC anomaly is generated by the zonal pressure gradient force, which is set up by radiating equatorial Kelvin and Rossby waves induced by the equatorial wind stress. Directly forced and reflected Rossby waves from the eastern basin propagate westward, contributing to intraseasonal zonal current near the surface but having weak impact on the peak ISV of the EUC.