Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Doug Richardson x
  • All content x
Clear All Modify Search
Thomas B. Richardson, Piers M. Forster, Timothy Andrews, and Doug J. Parker


Precipitation exhibits a significant rapid adjustment in response to forcing, which is important for understanding long-term climate change. In this study, fixed sea surface temperature (SST) simulations are used to analyze the spatial pattern of the rapid precipitation response. Three different forcing scenarios are investigated using data obtained from phase 5 of CMIP (CMIP5): an abrupt quadrupling of CO2, an abrupt increase in sulfate, and an abrupt increase in all anthropogenic aerosol levels from preindustrial to present day. Analysis of the local energy budget is used to understand the mechanisms that drive the observed changes.

It is found that the spatial pattern of the rapid precipitation response to forcing is primarily driven by rapid land surface temperature change, rather than the change in tropospheric diabatic cooling. As a result, the pattern of response due to increased CO2 opposes that due to sulfate and all anthropogenic aerosols, because of the opposing surface forcing. The rapid regional precipitation response to increased CO2 is robust among models, implying that the uncertainty in long-term changes is mainly associated with the response to SST-mediated feedbacks. Increased CO2 causes rapid warming of the land surface, which destabilizes the troposphere, enhancing convection and precipitation over land in the tropics. Precipitation is reduced over most tropical oceans because of a weakening of overturning circulation and a general shift of convection to over land. Over most land regions in the midlatitudes, circulation changes are small. Reduced tropospheric cooling therefore leads to drying over many midlatitude land regions.

Full access
Carly R. Tozer, James S. Risbey, Michael Grose, Didier P. Monselesan, Dougal T. Squire, Amanda S. Black, Doug Richardson, Sarah N. Sparrow, Sihan Li, and David Wallom
Free access
Doug Richardson, Amanda S. Black, Didier P. Monselesan, Thomas S. Moore II, James S. Risbey, Andrew Schepen, Dougal T. Squire, and Carly R. Tozer


Subseasonal forecast skill is not homogeneous in time, and prior assessment of the likely forecast skill would be valuable for end-users. We propose a method for identifying periods of high forecast confidence using atmospheric circulation patterns, with an application to southern Australia precipitation. In particular, we use archetypal analysis to derive six patterns, called archetypes, of daily 500-hPa geopotential height (Z 500) fields over Australia. We assign Z 500 reanalysis fields to the closest-matching archetype and subsequently link the archetypes to precipitation for three key regions in the Australian agriculture and energy sectors: the Murray Basin, southwest Western Australia, and western Tasmania. Using a 20-yr hindcast dataset from the European Centre for Medium-Range Weather Forecasts subseasonal-to-seasonal prediction system, we identify periods of high confidence as when hindcast Z 500 fields closely match an archetype according to a distance criterion. We compare the precipitation hindcast accuracy during these confident periods compared to normal. Considering all archetypes, we show that there is greater skill during confident periods for lead times of less than 10 days in the Murray Basin and western Tasmania, and for greater than 6 days in southwest Western Australia, although these conclusions are subject to substantial uncertainty. By breaking down the skill results for each archetype individually, we highlight how skill tends to be greater than normal for those archetypes associated with drier-than-average conditions.

Open access
Amanda S. Black, James S. Risbey, Christopher C. Chapman, Didier P. Monselesan, Thomas S. Moore II, Michael J. Pook, Doug Richardson, Bernadette M. Sloyan, Dougal T. Squire, and Carly R. Tozer


Large-scale cloud features referred to as cloudbands are known to be related to widespread and heavy rain via the transport of tropical heat and moisture to higher latitudes. The Australian northwest cloudband is such a feature that has been identified in simple searches of satellite imagery but with limited investigation of its atmospheric dynamical support. An accurate, longterm climatology of northwest cloudbands is key to robustly assessing these events. A dynamically based search algorithm has been developed that is guided by the presence and orientation of the subtropical jet stream. This jet stream is the large-scale atmospheric feature that determines the development and alignment of a cloudband. Using a new 40-year dataset of cloudband events compiled by this search algorithm, composite atmospheric and ocean surface conditions over the period 1979-2018 have been assessed. Composite cloudband upper level flow revealed a tilted low pressure trough embedded in a Rossby wave train. Composites of vertically integrated water vapor transport centered around the jet maximum during northwest cloudband events reveal a distinct Atmospheric River supplying tropical moisture for cloudband rainfall. Parcel backtracking indicated multiple regions of moisture support for cloudbands. A thermal wind anomaly orientated with respect to enhanced sea surface temperature gradient over the Indian Ocean was also a key composite cloudband feature. 300 years of a freely-coupled control simulation of the ACCESS-D system was assessed for its ability to simulate northwest cloudbands. Composite analysis of model cloudbands compared reasonably well to reanalysis despite some differences in seasonality and frequency of occurrence.

Restricted access
M. Ades, R. Adler, Rob Allan, R. P. Allan, J. Anderson, Anthony Argüez, C. Arosio, J. A. Augustine, C. Azorin-Molina, J. Barichivich, J. Barnes, H. E. Beck, Andreas Becker, Nicolas Bellouin, Angela Benedetti, David I. Berry, Stephen Blenkinsop, Olivier. Bock, Michael G. Bosilovich, Olivier. Boucher, S. A. Buehler, Laura. Carrea, Hanne H. Christiansen, F. Chouza, John R. Christy, E.-S. Chung, Melanie Coldewey-Egbers, Gil P. Compo, Owen R. Cooper, Curt Covey, A. Crotwell, Sean M. Davis, Elvira de Eyto, Richard A. M de Jeu, B.V. VanderSat, Curtis L. DeGasperi, Doug Degenstein, Larry Di Girolamo, Martin T. Dokulil, Markus G. Donat, Wouter A. Dorigo, Imke Durre, Geoff S. Dutton, G. Duveiller, James W. Elkins, Vitali E. Fioletov, Johannes Flemming, Michael J. Foster, Richard A. Frey, Stacey M. Frith, Lucien Froidevaux, J. Garforth, S. K. Gupta, Leopold Haimberger, Brad D. Hall, Ian Harris, Andrew K Heidinger, D. L. Hemming, Shu-peng (Ben) Ho, Daan Hubert, Dale F. Hurst, I. Hüser, Antje Inness, K. Isaksen, Viju John, Philip D. Jones, J. W. Kaiser, S. Kelly, S. Khaykin, R. Kidd, Hyungiun Kim, Z. Kipling, B. M. Kraemer, D. P. Kratz, R. S. La Fuente, Xin Lan, Kathleen O. Lantz, T. Leblanc, Bailing Li, Norman G Loeb, Craig S. Long, Diego Loyola, Wlodzimierz Marszelewski, B. Martens, Linda May, Michael Mayer, M. F. McCabe, Tim R. McVicar, Carl A. Mears, W. Paul Menzel, Christopher J. Merchant, Ben R. Miller, Diego G. Miralles, Stephen A. Montzka, Colin Morice, Jens Mühle, R. Myneni, Julien P. Nicolas, Jeannette Noetzli, Tim J. Osborn, T. Park, A. Pasik, Andrew M. Paterson, Mauri S. Pelto, S. Perkins-Kirkpatrick, G. Pétron, C. Phillips, Bernard Pinty, S. Po-Chedley, L. Polvani, W. Preimesberger, M. Pulkkanen, W. J. Randel, Samuel Rémy, L. Ricciardulli, A. D. Richardson, L. Rieger, David A. Robinson, Matthew Rodell, Karen H. Rosenlof, Chris Roth, A. Rozanov, James A. Rusak, O. Rusanovskaya, T. Rutishäuser, Ahira Sánchez-Lugo, P. Sawaengphokhai, T. Scanlon, Verena Schenzinger, S. Geoffey Schladow, R. W Schlegel, Eawag Schmid, Martin, H. B. Selkirk, S. Sharma, Lei Shi, S. V. Shimaraeva, E. A. Silow, Adrian J. Simmons, C. A. Smith, Sharon L Smith, B. J. Soden, Viktoria Sofieva, T. H. Sparks, Paul W. Stackhouse Jr., Wolfgang Steinbrecht, Dimitri A. Streletskiy, G. Taha, Hagen Telg, S. J. Thackeray, M. A. Timofeyev, Kleareti Tourpali, Mari R. Tye, Ronald J. van der A, Robin, VanderSat B.V. van der Schalie, Gerard van der SchrierW. Paul, Guido R. van der Werf, Piet Verburg, Jean-Paul Vernier, Holger Vömel, Russell S. Vose, Ray Wang, Shohei G. Watanabe, Mark Weber, Gesa A. Weyhenmeyer, David Wiese, Anne C. Wilber, Jeanette D. Wild, Takmeng Wong, R. Iestyn Woolway, Xungang Yin, Lin Zhao, Guanguo Zhao, Xinjia Zhou, Jerry R. Ziemke, and Markus Ziese
Full access