Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Douglas Vandemark x
  • All content x
Clear All Modify Search
Amanda Plagge, James B. Edson, and Douglas Vandemark

Abstract

Observations of ocean–atmosphere coupling across persistent mesoscale sea surface temperature (SST) gradients are used to examine the controls of atmospheric stability, pressure gradient force, and heat flux that are considered central to oft-observed coupling between wind and SST. Moored air–sea flux measurements near the Gulf Stream are combined with QuikSCAT satellite scatterometer equivalent neutral wind (ENW) data to assess correlations between SST, air–sea fluxes, pressure, and wind perturbations at scales of 10–100 days. The net effect of ocean fronts meandering past the site enabled buoy observation of SST impacts on wind, with coupling coefficients of 0.3–0.5 similar to past studies. Wind stress–SST and ENW–SST correlation coefficients are slightly higher, and roughly 20% of the ENW perturbation is attributed to stratification impacts predicted by Monin–Obukhov (MO) similarity theory. Significantly higher correlation is observed when relating wind or stress perturbations to buoyant heat flux variation. Atmospheric pressure perturbation with SST of order 0.5 hPa °C−1 is observed, as well as high negative correlation between wind and pressure variations. Length and time scales associated with the coupling indicate that peak correlations occur at 50–70 days and 300–500 km, consistent with mesoscale meander scales. Coupling coefficient values vary significantly depending on analysis time scale and exhibit a range near to recently observed interbasin variability. This variability is attributed to the extent of oceanic length scales permitted in the analysis. Together, results affirm the central role of SST-induced turbulent heat flux in controlling pressure field adjustments and thereby the wind perturbations over SST fronts.

Full access
Amanda M. Plagge, Douglas Vandemark, and Bertrand Chapron

Abstract

A 5-yr dataset collected over two surface current and meteorological moorings allows rigorous evaluation of questions surrounding wave–current interaction and the scatterometer. Results demonstrate that scatterometer winds represent winds relative to the moving sea surface, affirming previous observational efforts that inferred the phenomenon using climatological approaches over larger time and space scales in equatorial and western boundary currents. Comparisons of wind residuals between Ku-band Quick Scatterometer (QuikSCAT) and buoy measurements show nearly one-to-one correlations with ocean surface velocity for 5-, 12.5-, and 25-km resolution wind speed products, especially under conditions of moderate wind speed and near-neutral atmospheric stability. Scatterometer and buoy wind direction differences due to currents were observed to be negligible for the range of surface velocities encountered and the length scales observed by QuikSCAT. Similar analyses are applied to C-band Advanced Scatterometer (ASCAT) satellite wind measurements at the same sites, as well as to satellite altimeter winds, and overall confirm the results seen with QuikSCAT; differences are likely the combined result of sampling, satellite wind algorithms, and geophysical wind–wave coupling in the presence of currents. On the whole, this study affirms that at length scales of 10 km and longer the scatterometer wind can be considered to be current relative. Observed differences between earth-relative and current-relative winds of order 10%–20% of the wind velocity are not uncommon in this and other ocean regions and this study more fully validates that microwave remote sensing winds appear to respond to wind stress even in the presence of larger-scale currents.

Full access
Douglas Vandemark, James B. Edson, and Bertrand Chapron

Abstract

Aircraft altimeter and in situ measurements are used to examine relationships between altimeter backscatter and the magnitude of near-surface wind and friction velocities. Comparison of altimeter radar cross section with wind speed is made through the modified Chelton–Wentz algorithm. Improved agreement is found after correcting 10-m winds for both surface current and atmospheric stability. An altimeter friction velocity algorithm is derived based on the wind speed model and an open-ocean drag coefficient. Close agreement between altimeter- and in situ–derived friction velocities is found. For this dataset, quality of the altimeter inversion to surface friction velocity is comparable to that for adjusted winds and clearly better than the inversion to true 10-m wind speed.

Full access
Ge Chen, Bertrand Chapron, Robert Ezraty, and Douglas Vandemark

Abstract

Numerous case reports and regional studies on swell and wind sea events have been documented during the past century. The global picture of these common oceanic phenomena, however, is still incomplete in many aspects. This paper presents a feasibility study of using collocated wind speed and significant wave height measurements from simultaneous satellite scatterometer and altimeter sources to observe the spatial and seasonal pattern of dominant swell and wind wave zones in the world's oceans. Two energy-related normalized indices are proposed, on the basis of which global statistics of swell/wind sea probabilities and intensities are obtained. It is found that three well-defined tongue-shaped zones of swell dominance, termed “swell pools,” are located in the eastern tropical areas of the Pacific, the Atlantic, and the Indian Oceans, respectively. Regions of intensive wave growth are observed in the northwest Pacific, the northwest Atlantic, the Southern Ocean, and the Mediterranean Sea. Seasonality is distinct for the climate of both swell and wind sea, notably the large-scale northward bending of the swell pools in boreal summer, and the dramatic shift of wave-growing extent from a summer low to an autumn high. The results of this study may serve as a useful reference for a variety of activities, such as ocean wave modeling, satellite algorithm validation, coastal engineering, and ship routing, when information on swell and wind sea conditions is needed.

Full access
Gary T. Mitchum, David W. Hancock III, George S. Hayne, and Douglas C. Vandemark

Abstract

Data from satellite altimeters are often degraded by the occurrence of unrealistically high radar return cross sections, which indicate a breakdown of the rough surface scattering model used to interpret these measurements in terms of satellite to sea surface height ranges. The TOPEX altimetric data are examined and nearly 200 000 such events during the 7-yr period, 1993–99, inclusive, are identified. The primary purpose of this paper is to make a comprehensive description of where and when these events occur, which is important because many of the communities that make use of the TOPEX data are generally unaware of this phenomenon. It is shown that these events affect almost 6% of the over-ocean TOPEX data, but only approximately 60% of these events are rejected by the recommended TOPEX data flagging. A global description of these events is made, showing that the events are associated with regions of climatologically weak winds (e.g., the summer hemispheres and the western Pacific warm pool region), supporting the existing hypothesis that these events are due to returns from surfaces where centimeter-scale waves are suppressed. The TOPEX results are confirmed with a comparison to anomalous returns from the NASA Scatterometer (NSCAT), and the relationship to very low wind speeds is further examined using the Tropical Ocean Global Atmosphere–Tropical Atmosphere Ocean array (TOGA–TAO) moored buoys. Finally, it is shown that there is some evidence that not all of the events can be accounted for by very low wind speeds. This suggests that future work might exploit the occurrence of these events to study other phenomena, such as surface slicks, that may lead to additional geophysical applications of the altimetric data.

Full access
James B. Mead, Robert E. Mcintosh, Douglas Vandemark, and Calvin T. Swift

Abstract

A recently developed 1.4 mm wavelengh incoherent radar has potential for remote sensing of low reflectivity atmospheric targets for ranges up to several kilometers. Power output of 60 W is achieved using an Extended Interaction Oscillator (EIO). Preliminary reflectivity measurements of clouds and fog for ranges between 36 and 1900 meters are believed to be the first such measurements at this wavelength Limitations on the accuracy of the reflectivity measurements are discussed, highlighting uncertainties due to highly variable attenuation.

Full access