Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: E. A. Irvine x
  • Refine by Access: All Content x
Clear All Modify Search
E. A. Irvine, S. L. Gray, J. Methven, and I. A. Renfrew


For a targeted observations case, the dependence of the size of the forecast impact on the targeted dropsonde observation error in the data assimilation is assessed. The targeted observations were made in the lee of Greenland; the dependence of the impact on the proximity of the observations to the Greenland coast is also investigated. Experiments were conducted using the Met Office Unified Model (MetUM), over a limited-area domain at 24-km grid spacing, with a four-dimensional variational data assimilation (4D-Var) scheme. Reducing the operational dropsonde observation errors by one-half increases the maximum forecast improvement from 5% to 7%–10%, measured in terms of total energy. However, the largest impact is seen by replacing two dropsondes on the Greenland coast with two farther from the steep orography; this increases the maximum forecast improvement from 5% to 18% for an 18-h forecast (using operational observation errors). Forecast degradation caused by two dropsonde observations on the Greenland coast is shown to arise from spreading of data by the background errors up the steep slope of Greenland. Removing boundary layer data from these dropsondes reduces the forecast degradation, but it is only a partial solution to this problem. Although only from one case study, these results suggest that observations positioned within a correlation length scale of steep orography may degrade the forecast through the anomalous upslope spreading of analysis increments along terrain-following model levels.

Full access
I. A. Renfrew, G. W. K. Moore, J. E. Kristjánsson, H. Ólafsson, S. L. Gray, G. N. Petersen, K. Bovis, P. R. A. Brown, I. Føre, T. Haine, C. Hay, E. A. Irvine, A Lawrence, T. Ohigashi, S. Outten, R. S. Pickart, M. Shapiro, D. Sproson, R. Swinbank, A. Woolley, and S. Zhang

Greenland has a major influence on the atmospheric circulation of the North Atlantic-western European region, dictating the location and strength of mesoscale weather systems around the coastal seas of Greenland and directly influencing synoptic-scale weather systems both locally and downstream over Europe. High winds associated with the local weather systems can induce large air-sea fluxes of heat, moisture, and momentum in a region that is critical to the overturning of the thermohaline circulation, and thus play a key role in controlling the coupled atmosphere-ocean climate system.

The Greenland Flow Distortion Experiment (GFDex) is investigating the role of Greenland in defining the structure and predictability of both local and downstream weather systems through a program of aircraft-based observation and numerical modeling. The GFDex observational program is centered upon an aircraft-based field campaign in February and March 2007, at the dawn of the International Polar Year. Twelve missions were flown with the Facility for Airborne Atmospheric Measurements' BAe-146, based out of the Keflavik, Iceland. These included the first aircraft-based observations of a reverse tip jet event, the first aircraft-based observations of barrier winds off of southeast Greenland, two polar mesoscale cyclones, a dramatic case of lee cyclogenesis, and several targeted observation missions into areas where additional observations were predicted to improve forecasts.

In this overview of GFDex the background, aims and objectives, and facilities and logistics are described. A summary of the campaign is provided, along with some of the highlights of the experiment.

Full access