Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: E. E. FEDOROV x
  • Refine by Access: All Content x
Clear All Modify Search
E. E. FEDOROV

Abstract

No Abstract Available.

Full access
Georgy E. Manucharyan and Alexey V. Fedorov

Abstract

El Niño–Southern Oscillation (ENSO) is a pronounced mode of climate variability that originates in the tropical Pacific and affects weather patterns worldwide. Growing evidence suggests that despite extensive changes in tropical climate, ENSO was active over vast geological epochs stretching millions of years from the late Cretaceous to the Holocene. In particular, ENSO persisted during the Pliocene, when a dramatic reduction occurred in the mean east–west temperature gradient in the equatorial Pacific. The mechanisms for sustained ENSO in such climates are poorly understood. Here a comprehensive climate model is used to simulate ENSO for a broad range of tropical Pacific mean climates characterized by different climatological SST gradients. It is found that the simulated ENSO remains surprisingly robust: when the east–west gradient is reduced from 6° to 1°C, the amplitude of ENSO decreases only by 30%–40%, its dominant period remains close to 3–4 yr, and the spectral peak stays above red noise. To explain these results, the magnitude of ocean–atmosphere feedbacks that control the stability of the natural mode of ENSO (the Bjerknes stability index) is evaluated. It is found that as a result of reorganization of the atmospheric Walker circulation in response to changes in the mean surface temperature gradient, the growth/decay rates of the ENSO mode stay nearly constant throughout different climates. These results explain the persistence of ENSO in the past and, in particular, reconcile the seemingly contradictory findings of ENSO occurrence and the small mean east–west temperature gradient during the Pliocene.

Full access