Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: E. P. Jacobsen x
  • All content x
Clear All Modify Search
P. Klein, T. A. Bonin, J. F. Newman, D. D. Turner, P. B. Chilson, C. E. Wainwright, W. G. Blumberg, S. Mishra, M. Carney, E. P. Jacobsen, S. Wharton, and R. K. Newsom

Abstract

This paper presents an overview of the Lower Atmospheric Boundary Layer Experiment (LABLE), which included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was conducted as a collaborative effort between the University of Oklahoma (OU), the National Severe Storms Laboratory, Lawrence Livermore National Laboratory (LLNL), and the ARM program. LABLE can be considered unique in that it was designed as a multiphase, low-cost, multiagency collaboration. Graduate students served as principal investigators and took the lead in designing and conducting experiments aimed at examining boundary layer processes.

The main objective of LABLE was to study turbulent phenomena in the lowest 2 km of the atmosphere over heterogeneous terrain using a variety of novel atmospheric profiling techniques. Several instruments from OU and LLNL were deployed to augment the suite of in situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. This paper provides an overview of the experiment including 1) instruments deployed, 2) sampling strategies, 3) parameters observed, and 4) student involvement. To illustrate these components, the presented results focus on one particular aspect of LABLE: namely, the study of the nocturnal boundary layer and the formation and structure of nocturnal low-level jets. During LABLE, low-level jets were frequently observed and they often interacted with mesoscale atmospheric disturbances such as frontal passages.

Full access
W. L. Smith, H. E. Rvercomb, H. B. Howell, H. M. Woolf, R. O. Knuteson, R G. Decker, M. J. Lynch, E. R. Westwater, R. G. Strauch, K. P. Moran, B. Stankov, M. J. Falls, J. Jordan, M. Jacobsen, W. F. Dabberdt, R. McBeth, G. Albright, C. Paneitz, G. Wright, P. T. May, and M. T. Decker

During the week 29 October–4 November 1988, a Ground-based Atmospheric Profiling Experiment (GAPEX) was conducted at Denver Stapleton International Airport. The objective of GAPEX was to acquire and analyze atomspheric-temperature and moisture-profile data from state-of-the-art remote sensors. The sensors included a six-spectral-channel, passive Microwave Profiler (MWP), a passive, infrared High-Resolution Interferometer Sounder (HIS) that provides more than 1500 spectral channels, and an active Radio Acoustic Sounding System (RASS). A Cross-Chain Loran Atmospheric Sounding System (CLASS) was used to provide research-quality in situ thermodynamic observations to verify the accuracy and resolution characteristics of each of the three remote sensors. The first results of the project are presented here to inform the meteorological community of the progress achieved during the GAPEX field phase. These results also serve to demonstrate the excellent prospects for an accurate, continuous thermodynamic profiling system to complement NOAA's forthcoming operational wind profiler.

Full access