Search Results
Abstract
A two4Mensional second-order turbulence-closure model based on Mellor-Yamada level 3 is used to examine the nocturnal turbulence characteristics over Rattlesnake Mountain in Washington. Simulations of mean horizontal velocities and potential temperatures agree well with data. The equations for the components of the turbulent kinetic energy (TKE) show that anisotropy contributes in ways that are counter to our intuition developed from mean now considerations: shear production under stable conditions forces the suppression of the vertical component proportion of loud TKE, while potential-temperature variance under stable conditions leads to a positive (countergradient) contribution to the heat flux that increases the vertical component proportion of total TKE. This paper provides a qualitative analysis of simulated turbulence fields, which indicates significant variation over the windward and leeward slopes. From the simulation results, turbulence anisotropy is seen to develop in the katabatic flow region where vertical wind shears and atmospheric stability are large. An enhancement of the vertical component proportion of the total TKE takes place over the leeward slope as the downslope distance increases. The countergradient portion of the turbulent heat flux plays an important role in producing regions of anisotropy.
Abstract
A two4Mensional second-order turbulence-closure model based on Mellor-Yamada level 3 is used to examine the nocturnal turbulence characteristics over Rattlesnake Mountain in Washington. Simulations of mean horizontal velocities and potential temperatures agree well with data. The equations for the components of the turbulent kinetic energy (TKE) show that anisotropy contributes in ways that are counter to our intuition developed from mean now considerations: shear production under stable conditions forces the suppression of the vertical component proportion of loud TKE, while potential-temperature variance under stable conditions leads to a positive (countergradient) contribution to the heat flux that increases the vertical component proportion of total TKE. This paper provides a qualitative analysis of simulated turbulence fields, which indicates significant variation over the windward and leeward slopes. From the simulation results, turbulence anisotropy is seen to develop in the katabatic flow region where vertical wind shears and atmospheric stability are large. An enhancement of the vertical component proportion of the total TKE takes place over the leeward slope as the downslope distance increases. The countergradient portion of the turbulent heat flux plays an important role in producing regions of anisotropy.
Abstract
The authors report results of a numerical model used to simulate wind and turbulence fields for porous, living shelterbelts with seven different cross-sectional shapes. The simulations are consistent with results of Woodruff and Zingg whose wind-tunnel study demonstrated that all shelterbelts with very different shapes have nearly identical reduction of wind and turbulence. The simulations also showed that the pressure-loss (resistance) coefficient for smooth-shaped or streamlined shelterbelts is significantly smaller than that for rectangle-shaped or triangle-shaped shelterbelts with a windward vertical side. However, the shelter effects are not proportional to the pressure-loss coefficient (drag). Analysis of the momentum budget demonstrated that in the near lee and in the far lee, both vertical advection and pressure gradient have opposite roles in the recovery of wind speed. This behavior, combined with differences in permeability, is the likely cause of reduced sensitivity of shelter effects to shelterbelt shape.
Abstract
The authors report results of a numerical model used to simulate wind and turbulence fields for porous, living shelterbelts with seven different cross-sectional shapes. The simulations are consistent with results of Woodruff and Zingg whose wind-tunnel study demonstrated that all shelterbelts with very different shapes have nearly identical reduction of wind and turbulence. The simulations also showed that the pressure-loss (resistance) coefficient for smooth-shaped or streamlined shelterbelts is significantly smaller than that for rectangle-shaped or triangle-shaped shelterbelts with a windward vertical side. However, the shelter effects are not proportional to the pressure-loss coefficient (drag). Analysis of the momentum budget demonstrated that in the near lee and in the far lee, both vertical advection and pressure gradient have opposite roles in the recovery of wind speed. This behavior, combined with differences in permeability, is the likely cause of reduced sensitivity of shelter effects to shelterbelt shape.
Abstract
Temperature and wind speed measurements over a 6-year period from a 32 m tower located in a primarily rural area are used to assess the pollutant-dispersive characteristics of a rural site. A monthly comparison of a crude pollution-trapping index shows July through September the most favorable, and December through February the least favorable, months for the trapping of contaminants emitted from ground-based sources in rural areas.
Abstract
Temperature and wind speed measurements over a 6-year period from a 32 m tower located in a primarily rural area are used to assess the pollutant-dispersive characteristics of a rural site. A monthly comparison of a crude pollution-trapping index shows July through September the most favorable, and December through February the least favorable, months for the trapping of contaminants emitted from ground-based sources in rural areas.