Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: E. Swiatek x
  • Refine by Access: All Content x
Clear All Modify Search
John M. Frank
,
William J. Massman
,
Edward Swiatek
,
Herb A. Zimmerman
, and
Brent E. Ewers

Abstract

Sonic anemometry is fundamental to all eddy-covariance studies of surface energy and ecosystem carbon and water balance. Recent studies have shown that some nonorthogonal anemometers underestimate vertical wind. Here it is hypothesized that this is due to a lack of transducer and structural shadowing correction. This is tested with a replicated intercomparison experiment between orthogonal (K-probe, Applied Technologies, Inc.) and nonorthogonal (A-probe, Applied Technologies, Inc.; and CSAT3 and CSAT3V, Campbell Scientific, Inc.) anemometer designs. For each of the 12 weeks, five randomly selected and located anemometers were mounted both vertically and horizontally. Bayesian analysis was used to test differences between half-hourly anemometer measurements of the standard deviation of wind (σ u , συ, and σ w ) and temperature, turbulent kinetic energy (TKE), the ratio between vertical/horizontal TKE (VHTKE), and sensible heat flux (H). Datasets were analyzed with various applications of transducer shadow correction. Using the manufacturer’s current recommendations, orthogonal anemometers partitioned higher VHTKE and measured about 8%–9% higher σ w and ~10% higher H. This difference can be mitigated by adding shadow correction to nonorthogonal anemometers. The horizontal manipulation challenged each anemometer to measure the three dimensions consistently, which allowed for testing two hypotheses explaining the underestimate in vertical wind. While measurements were essentially unchanged when the orthogonal anemometers were mounted sideways, the nonorthogonal anemometers changed substantially and confirmed the lack of shadow correction. Considering the ubiquity of nonorthogonal anemometers, these results are consequential across flux networks and could potentially explain half of the ~20% missing energy that is typical at most flux sites.

Full access
J. C. Doran
,
F. J. Barnes
,
R. L. Coulter
,
T. L. Crawford
,
D. D. Baldocchi
,
L. Balick
,
D. R. Cook
,
D. Cooper
,
R. J. Dobosy
,
W. A. Dugas
,
L. Fritschen
,
R. L. Hart
,
L. Hipps
,
J. M. Hubbe
,
W. Gao
,
R. Hicks
,
R. R. Kirkham
,
K. E. Kunkel
,
T. J. Martin
,
T. P. Meyers
,
W. Porch
,
J. D. Shannon
,
W. J. Shaw
,
E. Swiatek
, and
C. D. Whiteman

A field campaign was carried out near Boardman, Oregon, to study the effects of subgrid-scale variability of sensible- and latent-heat fluxes on surface boundary-layer properties. The experiment involved three U.S. Department of Energy laboratories, one National Oceanic and Atmospheric Administration laboratory, and several universities. The experiment was conducted in a region of severe contrasts in adjacent surface types that accentuated the response of the atmosphere to variable surface forcing. Large values of sensible-heat flux and low values of latent-heat flux characterized a sagebrush steppe area; significantly smaller sensible-heat fluxes and much larger latent-heat fluxes were associated with extensive tracts of irrigated farmland to the north, east, and west of the steppe. Data were obtained from an array of surface flux stations, remote-sensing devices, an instrumented aircraft, and soil and vegetation measurements. The data will be used to address the problem of extrapolating from a limited number of local measurements to area-averaged values of fluxes suitable for use in global climate models.

Full access
W. P. Kustas
,
D.C. Goodrich
,
M.S. Moran
,
S. A. Amer
,
L. B. Bach
,
J. H. Blanford
,
A. Chehbouni
,
H. Claassen
,
W. E. Clements
,
P. C. Doraiswamy
,
P. Dubois
,
T. R. Clarke
,
C. S. T. Daughtry
,
D. I. Gellman
,
T. A. Grant
,
L. E. Hipps
,
A. R. Huete
,
K. S. Humes
,
T. J. Jackson
,
T. O. Keefer
,
W. D. Nichols
,
R. Parry
,
E. M. Perry
,
R. T. Pinker
,
P. J. Pinter Jr.
,
J. Qi
,
A. C. Riggs
,
T. J. Schmugge
,
A. M. Shutko
,
D. I. Stannard
,
E. Swiatek
,
J. D. van Leeuwen
,
J. van Zyl
,
A. Vidal
,
J. Washburne
, and
M. A. Weltz

Arid and semiarid rangelands comprise a significant portion of the earth's land surface. Yet little is known about the effects of temporal and spatial changes in surface soil moisture on the hydrologic cycle, energy balance, and the feedbacks to the atmosphere via thermal forcing over such environments. Understanding this interrelationship is crucial for evaluating the role of the hydrologic cycle in surface–atmosphere interactions.

This study focuses on the utility of remote sensing to provide measurements of surface soil moisture, surface albedo, vegetation biomass, and temperature at different spatial and temporal scales. Remote-sensing measurements may provide the only practical means of estimating some of the more important factors controlling land surface processes over large areas. Consequently, the use of remotely sensed information in biophysical and geophysical models greatly enhances their ability to compute fluxes at catchment and regional scales on a routine basis. However, model calculations for different climates and ecosystems need verification. This requires that the remotely sensed data and model computations be evaluated with ground-truth data collected at the same areal scales.

The present study (MONSOON 90) attempts to address this issue for semiarid rangelands. The experimental plan included remotely sensed data in the visible, near-infrared, thermal, and microwave wavelengths from ground and aircraft platforms and, when available, from satellites. Collected concurrently were ground measurements of soil moisture and temperature, energy and water fluxes, and profile data in the atmospheric boundary layer in a hydrologically instrumented semiarid rangeland watershed. Field experiments were conducted in 1990 during the dry and wet or “monsoon season” for the southwestern United States. A detailed description of the field campaigns, including measurements and some preliminary results are given.

Full access