Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Efim Pelinovsky x
  • Refine by Access: All Content x
Clear All Modify Search
Roger Grimshaw, Efim Pelinovsky, and Tatiana Talipova

Abstract

Using linear internal wave theory for an ocean stratified by both density and current, several background profiles are identified for which internal wave beams can propagate without any internal reflection. These special profiles are favorably compared with available oceanic data.

Full access
Peter Holloway, Efim Pelinovsky, Tatjana Talipova, and Belinda Barnes

Abstract

No abstract available.

Full access
Peter E. Holloway, Efim Pelinovsky, Tatyana Talipova, and Belinda Barnes

Abstract

A numerical solution to the generalized Korteweg-de Vries (K-dV) equation, including horizontal variability and dissipation, is used to model the evolution of an initially sinusoidal long internal wave, representing an internal tide. The model shows the development of the waveform to the formation of shocks and solitons as it propagates shoreward over the continental slope and shelf. The model is run using observed hydrographic conditions from the Australian North West Shelf and results are compared to current meter and thermistor observations from the shelf-break region. It is found from observations that the coefficient of nonlinearity in the K-dV equation changes sign from negative in deep water to positive in shallow water, and this plays a major role in determining the form of the internal tide transformation. On the shelf there is strong temporal variability in the nonlinear coefficient due to both background shear flow and the large amplitude of the internal tide, which distorts the density profile over a wave period. Both the model and observations show the formation of an initial shock on the leading face of the internal tide. In shallow water, the change in sign of the coefficient of nonlinearity causes the shock to evolve into a tail of short period sinusoidal waves. After further propagation a second shock forms on the back face of the wave, followed by a packet of solitons. The inclusion of bottom friction in the model is investigated along with the dependance on initial wave amplitude and variability in the coefficients of nonlinearity and dispersion. Friction is found to be important in limiting the amplitudes of the evolving waves.

Full access
Roger Grimshaw, Efim Pelinovsky, Tatiana Talipova, and Audrey Kurkin

Abstract

Internal solitary waves transform as they propagate shoreward over the continental shelf into the coastal zone, from a combination of the horizontal variability of the oceanic hydrology (density and current stratification) and the variable depth. If this background environment varies sufficiently slowly in comparison with an individual solitary wave, then that wave possesses a soliton-like form with varying amplitude and phase. This stage is studied in detail in the framework of the variable-coefficient extended Korteweg–de Vries equation where the variation of the solitary wave parameters can be described analytically through an asymptotic description as a slowly varying solitary wave. Direct numerical simulation of the variable-coefficient extended Korteweg–de Vries equation is performed for several oceanic shelves (North West shelf of Australia, Malin shelf edge, and Arctic shelf) to demonstrate the applicability of the asymptotic theory. It is shown that the solitary wave may maintain its soliton-like form for large distances (up to 100 km), and this fact helps to explain why internal solitons are widely observed in the world's oceans. In some cases the background stratification contains critical points (where the coefficients of the nonlinear terms in the extended Korteweg–de Vries equation change sign), or does not vary sufficiently slowly; in such cases the solitary wave deforms into a group of secondary waves. This stage is studied numerically.

Full access