Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Eli J. Dennis x
  • All content x
Clear All Modify Search
Eli J. Dennis and Matthew R. Kumjian


Severe hailstorms produce over $1 billion in insured losses annually in the United States, yet details of a given storm’s hail threat (e.g., maximum hailstone size and total hailfall) remain challenging to forecast. Previous research suggests that, in addition to maximum updraft speed, the storm-relative airflow could be equally important for hail formation and growth. This study is a first step toward determining how changes in environmental wind shear and subsequent changes in simulated supercell storm structure affect hail growth. Using Cloud Model 1 (CM1) with 500-m horizontal and 250-m vertical grid spacing, 20 idealized simulations are performed in which the thermodynamic profile remains fixed but the environmental hodograph is systematically altered. Hail growth is quantified using the hail mass mixing ratio from composites of storms over the last hour of simulation time. Hailstone growth “pseudotrajectories” are computed from these storm composites to determine favorable embryo source regions.

Results indicate that increased deep-layer east–west shear elongates the storm’s updraft in that direction, providing 1) increased volumes over which microphysically relevant hail processes can act, 2) increased hailstone residence times within the updraft, and 3) a larger potential embryo source region; together, these lead to increased hail mass. Increased low-level north–south shear, which results in hodographs with increased 0–3-km storm-relative helicity, also elongates the updraft in the north–south direction. However, hail mass is reduced owing to a separation of favorable embryo source regions (which shift southward) and available hydrometeors to serve as embryos (which shift northward).

Full access
Eli J. Dennis and Ernesto Hugo Berbery


Soil hydraulic properties are critical in estimating surface and subsurface processes, including surface fluxes, the distribution of soil moisture, and the extraction of water by root systems. In most numerical weather and climate models, those properties are assigned using maps of soil texture complemented by look-up tables. Comparison of two widely used soil texture databases, the USDA State Soil Geographic database (STATSGO) and Beijing Normal University’s soil texture database (GSDE), reveals that differences are widespread and can be spatially coherent over large areas that can eventually lead to regional climate differences. For instance, over the U.S. Great Plains, GSDE stipulates finer soil grains than STATSGO, while the opposite is true over central Mexico. In this study, we employ the WRF/CLM4 modeling suite to investigate the sensitivity of the simulated regional climate to changes in the prescribed soil maps. Wherever GSDE has finer grains than STATSGO (e.g., over the U.S. Great Plains), the soil retains water more strongly, as evidenced by smaller latent heat flux (−20 W m−2), larger sensible heat flux (+20 W m−2), and correspondingly, a decrease in the 2-m humidity (−1 g kg−1) and an increase in 2-m temperature (+1.5 K). The opposite behavior is found over areas of coarser grains in GSDE (e.g., over central Mexico). Further, the changes in surface fluxes via soil texture lead to differences in the thermodynamic structure of the PBL. Results suggest that neither soil hydraulic properties nor soil moisture solely dictate the strength of surface fluxes, but in combination they alter the land–atmosphere coupling in nontrivial ways.

Open access