Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Elsa Cattani x
  • Refine by Access: All Content x
Clear All Modify Search
Daniel Rosenfeld, Elsa Cattani, Samantha Melani, and Vincenzo Levizzani

The transition from the Advanced Very High Resolution Radiometer (AVHRR)/2 to AVHRR/3 on NOAA polar orbiters was associated with a switching from daylight operations of the 3.7- to 1.6μm wave band, while retaining 3.7 μm for nighttime operations. Investigations of the daylight applicability of the two channels suggest that the 1.6-μm wave band for daylight operations does not prove to be the better choice, at least for cloud applications. The 3.7-μm wave band is much less affected by surface contamination, and measures more faithfully and unambiguously the particle effective radius near cloud tops. The 1.6-μm radiation penetrates deeper into the cloud, supplying an integrated signal throughout the inner portions of the cloud, including surface contribution. Therefore, a synergetic use of the two wave bands can provide an improved retrieval of cloud microstructure and precipitation than from any of the channels alone. However, when one channel must be selected for the AVHRR/3, 3.7 μm performs much better for these applications. Both wave bands identify equally well microphysical features in the anvils of severe storms. For other applications, such as detection of ice and snow over vegetated surfaces and desert dust aerosols, the 1.6-μm wave band does not present clear advantages with respect to 3.7 μm, except that it can be used directly as is, whereas the 3.7-μm wave band has to be corrected for the thermal emission and water vapor absorption. Anyway, the Moderate Resolution Imaging Spectroradiometer (MODIS) can be used instead for the applications to the relatively slowly changing surface properties, while prioritizing the AVHRR for the faster varying atmospheric applications. Finally, the 3.7-mm wave band is more effective in detecting fog, fires, and hot spots. All these factors need to be considered by the operators of AVHRR/3 making a justifiable choice of the channels for the maximum benefit of the user community.

Full access
Sante Laviola, Agata Moscatello, Mario Marcello Miglietta, Elsa Cattani, and Vincenzo Levizzani


Two heavy rain events over the Central Mediterranean basin, which are markedly different by genesis, dimensions, duration, and intensity, are analyzed. Given the relative low frequency of this type of severe storms in the area, a synoptic analysis describing their development is included. A multispectral analysis based on geostationary multifrequency satellite images is applied to identify cloud type, hydrometeor phase, and cloud vertical extension. Precipitation intensity is retrieved from (i) surface rain gauges, (ii) satellite data, and (iii) numerical model simulations. The satellite precipitation retrieval algorithm 183-Water vapor Strong Lines (183-WSL) is used to retrieve rain rates and cloud hydrometeor type, classify stratiform and convective rainfall, and identify liquid water clouds and snow cover from the Advanced Microwave Sounding Unit-B (AMSU-B) sensor data. Rainfall intensity is also simulated with the Weather Research and Forecasting (WRF) numerical model over two nested domains with horizontal resolutions of 16 km (comparable to that of the satellite sensor AMSU-B) and 4 km. The statistical analysis of the comparison between satellite retrievals and model simulations demonstrates the skills of both methods for the identification of the main characteristics of the cloud systems with a suggested overall bias of the model toward very low rain intensities. WRF (in the version used for the experiment) seems to classify as low rain intensity regions those areas where the 183-WSL retrieves no precipitation while sensing a mixture of freshly nucleated cloud droplets and a large amount of water vapor; in these areas, especially adjacent to the rain clouds, large amounts of cloud liquid water are detected. The satellite method performs reasonably well in reproducing the wide range of gauge-detected precipitation intensities. A comparison of the 183-WSL retrievals with gauge measurements demonstrates the skills of the algorithm in discriminating between convective and stratiform precipitation using the scattering and absorption of radiation by the hydrometeors.

Full access