Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: Emanuele Di Lorenzo x
  • Refine by Access: All Content x
Clear All Modify Search
Thomas Kilpatrick
,
Niklas Schneider
, and
Emanuele Di Lorenzo

Abstract

The generation of variance by anomalous advection of a passive tracer in the thermocline is investigated using the example of density-compensated temperature and salinity anomalies, or spiciness. A coupled Markov model is developed in which wind stress curl forces the large-scale baroclinic ocean pressure that in turn controls the anomalous geostrophic advection of spiciness. The “double integration” of white noise atmospheric forcing by this Markov model results in a frequency (ω) spectrum of large-scale spiciness proportional to ω −4, so that spiciness variability is concentrated at low frequencies.

An eddy-permitting regional model hindcast of the northeast Pacific (1950–2007) confirms that time series of large-scale spiciness variability are exceptionally smooth, with frequency spectra ∝ ω −4 for frequencies greater than 0.2 cpy. At shorter spatial scales (wavelengths less than ∼500 km), the spiciness frequency spectrum is whitened by mesoscale eddies, but this eddy-forced variability can be filtered out by spatially averaging. Large-scale and long-term measurements are needed to observe the variance of spiciness or any other passive tracer subject to anomalous advection in the thermocline.

Full access
Vincent Combes
,
Emanuele Di Lorenzo
, and
Enrique Curchitser

Abstract

The marine ecosystem of the Gulf of Alaska (GOA) is one of the richest on the planet. The center of the GOA is characterized by high-nutrient and low-chlorophyll-a concentration. Recent observational studies suggest that advection of iron-rich coastal water is the primary mechanism controlling open ocean productivity. Specifically, there is evidence that mesoscale eddies along the coastal GOA entrain iron-rich coastal waters into the ocean interior. This study investigates the cross-shelf transport statistics in the GOA using a free-surface, hydrostatic, eddy-resolving primitive equation model over the period 1965–2004. The statistics of coastal water transport are computed using a model passive tracer, which is continuously released at the coast. The passive tracer can thus be considered a proxy for coastal biogeochemical quantities such as silicate, nitrate, iron, or oxygen, which are critical for explaining the GOA ecosystem dynamics. On average along the Alaska Current, it has been shown that at the surface while the advection of tracers by the average flow is directed toward the coast consistent with the dominant downwelling regime of the GOA, it is the mean eddy fluxes that contribute to offshore advection into the gyre interior. South of the Alaskan Peninsula, both the advection of tracers by the average flow and the mean eddy fluxes contribute to the mean offshore advection. On interannual and longer time scales, the offshore transport of the passive tracer in the Alaskan Stream does not correlate with large-scale atmospheric forcing, nor with local winds. In contrast in the Alaska Current region, stronger offshore transport of the passive tracer coincides with periods of stronger downwelling (in particular during positive phases of the Pacific decadal oscillation), which trigger the development of stronger eddies.

Full access
Niklas Schneider
,
Emanuele Di Lorenzo
, and
Pearn P. Niiler

Abstract

Hydrographic observations southwestward of the Southern California Bight in the period 1937–99 show that temperature and salinity variations have very different interannual variability. Temperature varies within and above the thermocline and is correlated with climate indices of El Niño, the Pacific decadal oscillation, and local upwelling. Salinity variability is largest in the surface layers of the offshore salinity minimum and is characterized by decadal-time-scale changes. The salinity anomalies are independent of temperature, of heave of the pycnocline, and of the climate indices. Calculations demonstrate that long-shore anomalous geostrophic advection of the mean salinity gradient accumulates along the mean southward trajectory along the California Current and produces the observed salinity variations. The flow anomalies for this advective process are independent of large-scale climate indices. It is hypothesized that low-frequency variability of the California Current system results from unresolved, small-scale atmospheric forcing or from the ocean mesoscale upstream of the Southern California Bight.

Full access
Emanuele Di Lorenzo
,
William R. Young
, and
Stefan Llewellyn Smith

Abstract

Numerical calculations of the rate at which energy is converted from the external to internal tides at steep oceanic ridges are compared with estimates from analytic theories. The numerical calculations are performed using a hydrostatic primitive equation ocean model that uses a generalized s-coordinate system as the vertical coordinate. The model [Regional Ocean Modeling System (ROMS)] estimates of conversion compare well with inviscid and nondiffusive theory in the sub- and supercritical regimes and are insensitive to the strength of viscosity and diffusivity. In the supercritical regime, the nondissipative analytic solution is singular all along the internal tide beams. Because of dissipation the ROMS solutions are nonsingular, although the density gradients are strongly enhanced along the beams. The agreement between model and theory indicates that the prominent singularities in the inviscid solution do not compromise the estimates of tidal conversion and that the linearization used in deriving the analytical estimates is valid. As the model beams radiate from the generation site the density gradients are further reduced and up to 20% of the energy is lost by model dissipation (vertical viscosity and diffusion) within 200 km of the ridge. As a result of the analysis of the numerical calculations the authors also report on the sensitivity of tidal conversion to topographic misrepresentation errors. These errors are associated with inadequate resolution of the topographic features and with the smoothing required to run the ocean model. In regions of steep topographic slope (i.e., the Hawaiian Ridge) these errors, if not properly accounted for, may lead to an underestimate of the true conversion rate up to 50%.

Full access
Intan S. Nurhati
,
Kim M. Cobb
, and
Emanuele Di Lorenzo

Abstract

Accurate projections of future temperature and precipitation patterns in many regions of the world depend on quantifying anthropogenic signatures in tropical Pacific climate against its rich background of natural variability. However, the detection of anthropogenic signatures in the region is hampered by the lack of continuous, century-long instrumental climate records. This study presents coral-based sea surface temperature (SST) and salinity proxy records from Palmyra Island in the central tropical Pacific over the twentieth century, based on coral strontium/calcium and the oxygen isotopic composition of seawater (δ 18OSW), respectively. On interannual time scales, the Sr/Ca-based SST record captures both eastern and central Pacific warming “flavors” of El Niño–Southern Oscillation (ENSO) variability (R = 0.65 and 0.67, respectively). On decadal time scales, the SST proxy record is highly correlated to the North Pacific gyre oscillation (NPGO) (R = −0.85), reflecting strong dynamical links between the central Pacific warming mode and extratropical decadal climate variability. Decadal-scale salinity variations implied by the coral-based δ 18OSW record are significantly correlated with the Pacific decadal oscillation (PDO) (R = 0.54). The salinity proxy record is dominated by an unprecedented trend toward lighter δ 18OSW values since the mid–twentieth century, implying that a significant freshening has taken place in the region, in line with climate model projections showing enhanced hydrological patterns under greenhouse forcing. Taken together, the new coral records suggest that low-frequency SST and salinity variations in the central tropical Pacific are controlled by different sets of dynamics and that recent hydrological trends in this region may be related to anthropogenic climate change.

Full access
Jason C. Furtado
,
Emanuele Di Lorenzo
,
Niklas Schneider
, and
Nicholas A. Bond

Abstract

The two leading modes of North Pacific sea surface temperature (SST) and sea level pressure (SLP), as well as their connections to tropical variability, are explored in the 24 coupled climate models used in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) to evaluate North Pacific decadal variability (NPDV) in the past [twentieth century; climate of the twentieth century (20C3M) scenario] and future [twenty-first century; Special Report on Emissions Scenarios (SRES) A1B scenario] climate. Results indicate that the two dominant modes of North Pacific oceanic variability, the Pacific decadal oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO), do not exhibit significant changes in their spatial and temporal characteristics under greenhouse warming. However, the ability of the models to capture the dynamics associated with the leading North Pacific oceanic modes, including their link to the corresponding atmospheric forcing patterns and to tropical variability, is questionable.

The temporal and spatial statistics of the North Pacific Ocean modes exhibit significant discrepancies from observations in their twentieth-century climate, most visibly for the second mode, which has significantly more low-frequency power and higher variance than in observations. The dynamical coupling between the North Pacific Ocean and atmosphere modes evident in the observations is very strong in the models for the first atmosphere–ocean coupled mode, which represents covariability of the PDO pattern with the Aleutian low (AL). However, the link for the second atmosphere–ocean coupled mode, describing covariability of an NPGO-like SST pattern with the North Pacific Oscillation (NPO), is not as clearly reproduced, with some models showing no relationship between the two.

Exploring the tropical Pacific–North Pacific teleconnections reveals more issues with the models. In contrast with observations, the atmospheric teleconnection excited by the El Niño–Southern Oscillation in the models does not project strongly on the AL–PDO coupled mode because of the displacement of the center of action of the AL in most models. Moreover, most models fail to show the observational connection between El Niño Modoki–central Pacific warming and NPO variability in the North Pacific. In fact, the atmospheric teleconnections associated with El Niño Modoki in some models have a significant projection on, and excite the AL–PDO coupled mode instead. Because of the known links between tropical Pacific variability and NPDV, these analyses demonstrate that focus on the North Pacific variability of climate models in isolation from tropical dynamics is likely to lead to an incomplete view, and inadequate prediction, of NPDV.

Full access
Yingying Zhao
,
Matthew Newman
,
Antonietta Capotondi
,
Emanuele Di Lorenzo
, and
Daoxun Sun

Abstract

Teleconnections from the tropics energize variations of the North Pacific climate, but detailed diagnosis of this relationship has proven difficult. Simple univariate methods, such as regression on El Niño–Southern Oscillation (ENSO) indices, may be inadequate since the key dynamical processes involved—including ENSO diversity in the tropics, re-emergence of mixed layer thermal anomalies, and oceanic Rossby wave propagation in the North Pacific—have a variety of overlapping spatial and temporal scales. Here we use a multivariate linear inverse model to quantify tropical and extratropical multiscale dynamical contributions to North Pacific variability, in both observations and CMIP6 models. In observations, we find that the tropics are responsible for almost half of the seasonal variance, and almost three-quarters of the decadal variance, along the North American coast and within the Subtropical Front region northwest of Hawaii. SST anomalies that are generated by local dynamics within the northeast Pacific have much shorter time scales, consistent with transient weather forcing by Aleutian low anomalies. Variability within the Kuroshio–Oyashio Extension (KOE) region is considerably less impacted by the tropics, on all time scales. Consequently, without tropical forcing the dominant pattern of North Pacific variability would be a KOE pattern, rather than the Pacific decadal oscillation (PDO). In contrast to observations, most CMIP6 historical simulations produce North Pacific variability that maximizes in the KOE region, with amplitude significantly higher than observed. Correspondingly, the simulated North Pacific in all CMIP6 models is shown to be relatively insensitive to the tropics, with a dominant spatial pattern generally resembling the KOE pattern, not the PDO.

Full access
Yingying Zhao
,
Emanuele Di Lorenzo
,
Daoxun Sun
, and
Samantha Stevenson

Abstract

Observational analyses suggest that a significant fraction of the tropical Pacific decadal variability (TPDV) (~60%–70%) is energized by the combined action of extratropical precursors of El Niño–Southern Oscillation (ENSO) originating from the North and South Pacific. Specifically, the growth and decay of the basin-scale TPDV pattern (time scale = ~1.5–2 years) is linked to the following sequence: ENSO precursors (extratropics, growth phase) → ENSO (tropics, peak phase) → ENSO successors (extratropics, decay phase) resulting from ENSO teleconnections. This sequence of teleconnections is an important physical basis for Pacific climate predictability. Here we examine the TPDV and its connection to extratropical dynamics in 20 models from phase 5 of the Coupled Model Intercomparison Project (CMIP). We find that most models (~80%) can simulate the observed spatial pattern (R > 0.6) and frequency characteristics of the TPDV. In 12 models, more than 65% of the basinwide Pacific decadal variability (PDV) originates from TPDV, which is comparable with observations (~70%). However, despite reproducing the basic spatial and temporal statistics, models underestimate the influence of the North and South Pacific ENSO precursors to the TPDV, and most of the models’ TPDV originates in the tropics. Only 35%–40% of the models reproduce the observed extratropical ENSO precursor patterns (R > 0.5). Models with a better representation of the ENSO precursors show 1) better basin-scale signatures of TPDV and 2) stronger ENSO teleconnections from/to the tropics that are consistent with observations. These results suggest that better representation of ENSO precursor dynamics in CMIP may lead to improved Pacific decadal variability dynamics and predictability.

Full access
Jason C. Furtado
,
Emanuele Di Lorenzo
,
Kim M. Cobb
, and
Annalisa Bracco

Abstract

Proxy-based paleoclimate reconstructions of tropical sea surface temperature (SST) fields may lead to better constraints of tropical climate variability in climate model projections. In this study, the authors quantify uncertainties associated with two popular SST anomaly reconstruction methods that have been applied over the last millennium. The first reconstruction method exploits the high correlation between the leading modes of variability of global precipitation and SSTs; the second method uses a multiregression model that exploits the multiple modes of covariability between precipitation and SSTs. Regardless of the proxy network density, the first method has skill only in the tropical eastern Pacific and misses some ENSO events. By contrast, the multiregression approach demonstrates high skill throughout the tropical Indo-Pacific region and predicts all ENSO events correctly. The advantage of the multiregression method lies in the second mode of covariability between SSTs and precipitation, which explains nearly 15% of the covariability between the two variables. However, when the period 1950–2000 is considered, the authors find that the nonstationarity in the second mode of covariability between SST and precipitation leads to a significant reduction of skill in the Indian Ocean and the warm pool region. This change suggests that the underlying stationarity assumption common in most climate field reconstruction methods needs to be treated more carefully, particularly in the tropics.

Full access
Kettyah C. Chhak
,
Emanuele Di Lorenzo
,
Niklas Schneider
, and
Patrick F. Cummins

Abstract

An ocean model is used to examine and compare the forcing mechanisms and underlying ocean dynamics of two dominant modes of ocean variability in the northeast Pacific (NEP). The first mode is identified with the Pacific decadal oscillation (PDO) and accounts for the most variance in model sea surface temperatures (SSTs) and sea surface heights (SSHs). It is characterized by a monopole structure with a strong coherent signature along the coast. The second mode of variability is termed the North Pacific Gyre Oscillation (NPGO). This mode accounts for the most variance in sea surface salinities (SSSs) in the model and in long-term observations. While the NPGO is related to the second EOF of the North Pacific SST anomalies (the Victoria mode), it is defined here in terms of SSH anomalies. The NPGO is characterized by a pronounced dipole structure corresponding to variations in the strengths of the eastern and central branches of the subpolar and subtropical gyres in the North Pacific. It is found that the PDO and NPGO modes are each tied to a specific atmospheric forcing pattern. The PDO is related to the overlying Aleutian low, while the NPGO is forced by the North Pacific Oscillation. The above-mentioned climate modes captured in the model hindcast are reflected in satellite altimeter data.

A budget reconstruction is used to study how the atmospheric forcing drives the SST and SSH anomalies. Results show that the basinwide SST and SSS anomaly patterns associated with each mode are shaped primarily by anomalous horizontal advection of mean surface temperature and salinity gradients (∇ T and ∇ S ) via anomalous surface Ekman currents. This suggests a direct link of these modes with atmospheric forcing and the mean ocean circulation. Smaller-scale patterns in various locations along the coast and in the Gulf of Alaska are, however, not resolved with the budget reconstructions. Vertical profiles of the PDO and NPGO indicate that the modes are strongest mainly in the upper ocean down to 250 m. The shallowness of the modes, the depth of the mean mixed layer, and wintertime temperature profile inversions contribute to the sensitivity of the budget analysis in the regions of reduced reconstruction skill.

Full access