Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Emma Suckling x
  • Refine by Access: All Content x
Clear All Modify Search
Emma B. Suckling and Leonard A. Smith

Abstract

While state-of-the-art models of Earth's climate system have improved tremendously over the last 20 years, nontrivial structural flaws still hinder their ability to forecast the decadal dynamics of the Earth system realistically. Contrasting the skill of these models not only with each other but also with empirical models can reveal the space and time scales on which simulation models exploit their physical basis effectively and quantify their ability to add information to operational forecasts. The skill of decadal probabilistic hindcasts for annual global-mean and regional-mean temperatures from the EU Ensemble-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) project is contrasted with several empirical models. Both the ENSEMBLES models and a “dynamic climatology” empirical model show probabilistic skill above that of a static climatology for global-mean temperature. The dynamic climatology model, however, often outperforms the ENSEMBLES models. The fact that empirical models display skill similar to that of today's state-of-the-art simulation models suggests that empirical forecasts can improve decadal forecasts for climate services, just as in weather, medium-range, and seasonal forecasting. It is suggested that the direct comparison of simulation models with empirical models becomes a regular component of large model forecast evaluations. Doing so would clarify the extent to which state-of-the-art simulation models provide information beyond that available from simpler empirical models and clarify current limitations in using simulation forecasting for decision support. Ultimately, the skill of simulation models based on physical principles is expected to surpass that of empirical models in a changing climate; their direct comparison provides information on progress toward that goal, which is not available in model–model intercomparisons.

Full access
Ed Hawkins, Pablo Ortega, Emma Suckling, Andrew Schurer, Gabi Hegerl, Phil Jones, Manoj Joshi, Timothy J. Osborn, Valérie Masson-Delmotte, Juliette Mignot, Peter Thorne, and Geert Jan van Oldenborgh

Abstract

The United Nations Framework Convention on Climate Change (UNFCCC) process agreed in Paris to limit global surface temperature rise to “well below 2°C above pre-industrial levels.” But what period is preindustrial? Somewhat remarkably, this is not defined within the UNFCCC’s many agreements and protocols. Nor is it defined in the IPCC’s Fifth Assessment Report (AR5) in the evaluation of when particular temperature levels might be reached because no robust definition of the period exists. Here we discuss the important factors to consider when defining a preindustrial period, based on estimates of historical radiative forcings and the availability of climate observations. There is no perfect period, but we suggest that 1720–1800 is the most suitable choice when discussing global temperature limits. We then estimate the change in global average temperature since preindustrial using a range of approaches based on observations, radiative forcings, global climate model simulations, and proxy evidence. Our assessment is that this preindustrial period was likely 0.55°–0.80°C cooler than 1986–2005 and that 2015 was likely the first year in which global average temperature was more than 1°C above preindustrial levels. We provide some recommendations for how this assessment might be improved in the future and suggest that reframing temperature limits with a modern baseline would be inherently less uncertain and more policy relevant.

Open access