Search Results

You are looking at 1 - 10 of 74 items for

  • Author or Editor: Eric A. Smith x
  • Refine by Access: All Content x
Clear All Modify Search
Eric A. Smith
Full access
Eric A. Smith

Abstract

An investigation of the Arabian heat low is carried out based on observations from various satellites, an experimental aircraft and a surface energy budget monitoring station. The observations suggest that during the spring period the Arabian heat low is nearly radiatively neutral and lacks the properties of an energy sink characteristic of conventional desert heat lows. Satellite derived top-of-atmosphere radiation budget analyses illustrate the high contrast properties of the radiative exchange fields over the southern Arabian Peninsula with respect to its surroundings. However, an examination of a four-month time series of daily averaged net radiative exchange over the Arabian Empty Quarter, derived from Nimbus-7 Earth Radiation Budget (ERB) measurements, indicates that the heat low region is in slight relative excess.

Combining these results with estimates of the surface energy budget inside the Arabian Empty Quarter (described in Part I), and previously estimated tropospheric radiative heating rate profiles, provide a closed set of flux terms used to evaluate the energy exchange process within the heat low region. A synthesis of these results indicates that the heat low is a total energy source region. A conceptual structure of the heat low is offered based on a three-layer stratification of the heating mechanisms. The possible role of the Arabian heat low in controlling thermodynamic conditions and forcing baroclinicity in the western Arabian Sea is discussed. It is concluded that the surplus energy properties of the heat low may serve as an important mechanism in controlling moisture transport into the southwest monsoon rainfall regions.

Full access
Eric A. Smith
Full access
Eric A. Smith

Abstract

An investigation of the structure and likely role of the Arabian heat low is presented in two parts. In the first paper the surface energy budget of the Arabian heat low is examined. The investigation focuses on a site within the interior of the Saudi Arabian Empty Quarter during June 1981. Automated surface stations are used to collect continuous measurements of radiative fluxes, state parameters, and the subsurface thermal profiles. These data are synthesized in order to estimate the radiation properties of the desert surface within the vortex of the Arabian heat low and to obtain an estimate of sensible heat exchange that would characterize the lower boundary of the heat low during the spring/summer transition season coinciding with the onset period of the Southwest Summer Monsoon.

Results of the analysis demonstrate how radiative exchange both controls the mean properties of the desert surface and responds to perturbations in the heat low environment. The foremost characteristic of surface energy exchange is the well-balanced diurnal regularity. It is shown how the radiation budget of the surface is modulated by basic difference in the shortwave (VIS) and new-infrared (NIR) solar spectrum. More than 2:1 differences are noted in the NIR and VIS surface albedos. Diurnal averages of the surface and parameters illustrate significant day-night differences associated with the diurnal pulsation of the heat low vortex. Day-night differences in surface temperature are extreme; close to 50°C. It is shown that the diurnal amplitude of surface skin temperature is poorly correlated with the bulk Richardson number, suggesting that surface heat exchange is largely controlled by direct radiative exchange through a modulating optical path rather than by heat diffusion. It is shown how the phase lag in subsurface heating imparts a skew in the diurnal sensible heat cycle. The amplitude of the sensible heating cycle is 220 W m−2 peaking approximately 40 minutes past local noon. In a daily averaged sense, subsurface heat storage is approximately zero—thus a first order approximation for the mean heat low at that time scale equates sensible heating to the negative value of net radiation. Finally it is shown how the surface energy budget responds to an intermittent intensification of the heat low that perturbs boundary layer moisture. In Part II, the results of this investigation are incorporated with other data sources in order to examine the bulk tropospheric heat exchange process within the overall heat low system.

Full access
Mitchell Weiss and Eric A. Smith

Abstract

A quantitative investigation of the relationship between satellite-derived cloud-top temperature parameters and the detection of intense convective rainfall is described. The area of study is that of the Cooperative Convective Precipitation Experiment (CCOPE), which was held near Miles City, Montana during the summer of 1981. Cloud-top temperatures, derived from the GOES-West operational satellite, were used to calculate a variety of parameters for objectively quantifying the convective intensity of a storm. A dense network of rainfall provided verification of surface rainfall. The cloud-top temperature field and surface rainfall data were processed into equally sized grid domains in order to best depict the individual samples of instantaneous precipitation.

The technique of statistical discriminant analysis was used to determine which combinations of cloud-top temperature parameters best classify rain versus no-rain occurrence using three different rain-rate cutoffs: 1, 4, and 10 mm h−1. Time lags within the 30 min rainfall verification were tested to determine the optimum time delay associated with rainfall reaching the ground.

A total of six storm cases were used to develop and test the statistical models. Discrimination of rain events was found to be most accurate when using a 10 mm h−1 rain-rate cutoff. Use parameters designated as coldest cloud-top temperature, the spatial mean of coldest cloud-top temperature, and change over time of mean coldest cloud-top temperature were found to be the best classifiers of rainfall in this study. Combining both a 10-min time lag (in terms of surface verification) with a 10 mm h−1 rain-rate threshold resulted in classifying over 60% of all rain and no-rain cases correctly.

Full access
Lei Shi and Eric A. Smith

Abstract

During the summer east Asian monsoon transition period in 1979, a meteorological field experiment entitled the Qinghai-Xizang Plateau Meteorological Experiment (QXPMEX-79) was conducted over the entire Tibetan Plateau. Data collected on and around the plateau during this period, in conjunction with a medium spectral-resolution infrared radiative transfer model, are used to gain an understanding of how elevation and surface biophysical factors, which are highly variable over the large-scale plateau domain, regulate the spatial distribution of clear-sky infrared cooling during the transition phase of the summer monsoon.

The spatial distribution of longwave cooling over the plateau is significantly influenced by variations in biophysical composition, topography, and elevation, the surface thermal diurnal cycle, and various climatological factors. An important factor is soil moisture. Bulk clear-sky longwave cooling rates are larger in the southeast sector of the plateau than in the north. This is because rainfall is greatest in the southeast, whereas the north is highly desertified and relative longwave radiative heating by the surface is greatest. Another important phenomenon is that the locale of a large-scale east-west-aligned spatial gradient in radiative cooling propagates northward with time. During the premonsoon period (May–June), the location of the strong spatial gradient is found in the southeastern margin of the plateau. Due to changes in surface and atmospheric conditions after the summer monsoon commences, the high gradient sector is shifted to the central Qinghai region. Furthermore, an overall decrease in longwave cooling takes place in the lower atmosphere immediately prior to the arrival of the active monsoon.

The magnitude of longwave cooling is significantly affected by skin-temperature boundary conditions at plateau altitudes. If skin-temperature discontinuities across the surface-atmosphere interface are neglected, bulk cooling rates will be in error up to 1°C day−1. The high surface skin temperatures, particularly in the afternoon, lead to significant relative longwave radiative heating in the lower atmosphere for which the impact in terms of vertical depth is shown to increase rather dramatically as a function of the elevation of the terrain. The significance of these results in the context of previous heat budget studies of the plateau suggest that the radiative heating term (QR) used by previous investigators contains far too much longwave cooling, and thus in a classic formulation of the Yanai Q 1 balance equation, would lead to underestimation of sensible heating into the atmospheric column.

Full access
Eric A. Smith and Alberto Mugnai

Abstract

The time-dependent role of cloud liquid water in conjunction with its vertical heterogeneities on top-of-atmosphere (TOA) passive microwave brightness temperatures is investigated. A cloud simulation is used to specify the microphysical structure of an evolving cumulus cloud growing toward the rain stage. A one-dimensional multistream solution to the radiative transfer equation is used to study the upwelling radiation at the top of the atmosphere arising from the combined effect of cloud, rain, and ice hydrometeors. Calculations are provided at six window frequencies and one H2O resonance band within the EHF/SHF microwave spectrum. Vertically detailed transmission functions are used to help delineate the principal radiative interactions that control TOA brightness temperatures. Brightness temperatures are then associated with a selection of microphysical situations that reveal how an evolving cloud medium attenuates rainfall and surface radiation. The investigation is primarily designed to study the impact of cloud microphysics on space-based measurements of passive microwave signals, specifically as they pertain to the retrieval of precipitation over water and land backgrounds.

Results demonstrate the large degree to which the relationship between microwave brightness temperature (BT) and rainrate (RR) can be altered purely by cloud water processes. The relative roles of the cloud and rain drop spectra in emissive contributions to the upwelling radiation are assessed with a normalized absorption index, which removes effects due purely to differences in the magnitudes of the cloud and rain liquid water contents. This index is used to help explain why the amplitudes of the BT-RR functions decrease with respect to cloud evolution time and why below-cloud precipitation is virtually masked from detection at the TOA.

Although cloud water tends to obscure BT-RR relationships, it does so in a differential manner with respect to frequency, suggesting that the overall impact of cloud water is not necessarily debilitating to precipitation retrieval schemes. Furthermore, it is shown how a “surface” of “probability” can be defined, which contains an optimal time-dependent BT-RR function associated with an evolving cloud at a given frequency and removes ambiguities within the BT-RR functions at the critical retrieval frequencies. The influence of a land surface having varying emissivity characteristics is also examined in the context of an evolving cloud to show how the time-dependent cloud microphysics modulates the sign and magnitude of brightness temperature differences between various frequencies.

Model results are assessed in conjunction with a Nimbus-7 SMMR case study of precipitation within an intense tropical Pacific storm. It is concluded that in order to obtain a realistic estimation and distribution of rainrates, the effects of cloud liquid water content must be considered.

Full access
Song Yang and Eric A. Smith

Abstract

Time–space distributions of mean monthly latent heating estimated from Special Sensor Microwave/Imager (SSM/I) passive microwave satellite measurements using the Florida State University precipitation profile retrieval algorithm over ocean regions are investigated for the 1992 annual cycle. The space domain is considered in both horizontal and vertical coordinates, with vertical retrieval made possible by the profiling design of the rain algorithm and the underlying relationship between the vertical derivatives of equivalent liquid water mass fluxes and latent heat release.

Comparisons of the retrieved mean monthly rainfall and rain frequency to climatological datasets and atoll rain gauge measurements indicate reasonable agreement except at latitudes above 40° where the satellite values are low biased relative to the climatologies. The horizontal distributions of mean monthly latent heating show that the locations of maximum heating lie in the vicinity and along the axes of well-documented large-scale convergence areas, particularly the intertropical convergence zone (ITCZ) and its transient offshoots, the South Pacific convergence zone (SPCZ), the tropical monsoon systems, and the middle-latitude storm tracks. The vertical distributions show that maximum heating rates of 5°C day−1 are located near the 5-km height level with positive heating extending to the top of the troposphere in the Tropics. Convection shifts associated with the 1992 El Niño–Southern Oscillation (ENSO) episode are well represented in the latent heating field. The seasonal variations of the ITCZ, SPCZ, and monsoon systems are clearly evident. The intraseasonal oscillation of latent heating during the northward propagation of the summer Indian monsoon is also a well-defined feature. Finally, the evolution of the Walker circulation is clearly depicted for both active and inactive ENSO conditions throughout 1992.

Emphasis is given to comparison and contrast of the SSM/I-derived heating fields to results given in the published literature. Many of the stationary and transient features appearing in the retrievals are consistent with previous studies concerning cloudiness, convection, and rainfall over low latitudes, with the exceptions stemming from specific features of the 1992 ENSO event. Therefore, the study provides a framework for using SSM/I measurements as a means to estimate the four-dimensional structure of latent heating over the tropical–subtropical oceans. Since the details of these structures are of considerable importance to the earth’s weather–climate system both in terms of forcing and response, and by virtue of the design of a rain profiling algorithm, these results are presented as a necessary first step in seeking to use satellite measurements to obtain the most important component of the diabatic heating field.

Full access
Eric A. Smith and Lei Shi

Abstract

The role of the Tibetan Plateau on the behavior of the surface longwave radiation budget is examined, and the behavior of the vertical profile of longwave cooling over the plateau, including its diurnal variation, is quantified. The investigation has been conducted with the aid of datasets obtained during the 1986 Tibetan Plateau Meteorological Experiment (TIPMEX-86). A medium spectral-resolution infrared radiative transfer model using a simple modification for applications in idealized complex (valley) terrain is developed for the study. This study focuses on the clear-sky case where the surface effects are most significant.

The TIPMEX-86 data, obtained during the spring-summer transition into the East Asian monsoon season, are used to help validate the surface longwave radiation budget at two sites of varying elevation: Lasa (3650 m) and Naqu (4500 m). Based on the degree to which skin-temperature boundary conditions control the magnitude of infrared cooling, we define the concept of relative longwave heating and explain its influence on the vertical infrared cooling-rate profile. Relative longwave radiative heating at the higher-elevation Naqu site is found to be twice as large as that corresponding to the lower-elevation Lasa site located within a valley. Besides reducing the infrared cooling rates, it is shown that relative longwave heating extends the period of the day over which the plateau acts as a direct heat source to the atmosphere. Computational results from the infrared model help substantiate observational analyses that indicate surface longwave net radiation at the high-elevation site, on clear days, exceeds 300 W m−2; this is an order of magnitude greater than typical of sea-level oceanic conditions. As a result of the unique meteorological and surface conditions, total infrared flux convergence occurs within the deep planetary boundary layer (i.e., infrared heating of the cloud-free lower atmosphere) at the high-elevation site during the afternoon. An important characteristic of the daytime longwave heating process of the lower layers is how it turns off like a switch at approximately 1800 MST, transforming almost immediately to maximum cooling of the lower layers.

Atmospheric longwave cooling is significantly influenced by variations in the biophysical composition of the surface and the associated thermal diurnal cycle. It is estimated that natural variations of surface emissivity could modulate longwave cooling by up to 40%. The largest impact would occur at a time when the surface temperature is high and the relative longwave radiative heating of the lower atmosphere by the surface reaches its maximum value.

Full access
Song Yang and Eric A. Smith

Abstract

Datasets of daily high-resolution upper-air soundings and Special Sensor Microwave/Imager (SSM/I) passive microwave measurements from the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) intensive operation period are used for large-scale diagnostic budget calculations of the apparent heat source (Q 1), the apparent moisture sink (Q 2), and latent heating to investigate the mechanisms of diabatic heating and moistening processes within the TOGA COARE Intensive Flux Array (IFA). Latent-heating retrievals are obtained from The Florida State University SSM/I-based precipitation profile retrieval algorithm. The estimates are correlated well with heating calculations from the soundings in which approximately 70% of the total heating arises from latent heat release. Moisture-budget processes also have a strong relationship with the large-scale environment, in which drying from condensation is mainly balanced by large-scale horizontal convergence of moisture flux. It is found that there may be more convective activity in summer than in winter over the tropical region of the western Pacific Ocean. Results also show that Q 1 and Q 2 exhibit a 20–30-day oscillation, in which active periods are associated with strong convection.

Comparisons of the Q 1Q 2 calculations over IFA are made with a number of previously published results to help to establish the similarities and differences of Q 1Q 2 between the warm pool and other regions of the Tropics. The Q 1Q 2 budget analyses over IFA then are used to study quantitatively the detailed vertical heating structures. Cumulus-scale heating–moistening processes are obtained by using published radiative divergence (Q R) data, retrieved latent heating, and the Q 1Q 2 calculations. These results show that cumulus-scale turbulent transport is an important mechanism in both heat and moisture budgets. Although daily estimates of eddy vertical moisture flux divergence are noisy, by averaging over 7-day periods and vertically integrating to obtain surface latent heat flux, good agreement with measured surface evaporation is found. This agreement demonstrates the feasibility of estimating averaged eddy heat–moisture flux profiles by combining satellite-derived rain profile retrievals with large-scale sounding and Q R data, a methodology that helps to shed light on the role of cumulus convection in atmospheric heating and moistening.

Full access