Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Eric D. Hunt x
  • All content x
Clear All Modify Search
Eric D. Hunt, Jeffrey B. Basara, and Cynthia R. Morgan

Abstract

The El Reno Oklahoma Mesonet (ELRE) site is one of a few Oklahoma Mesonet sites that has measured inversions of 10°C or greater between 1.5 and 9 m. Historical analyses revealed that strong inversions at ELRE have occurred because of rapid cooling near the surface shortly after sunset when conditions are calm, clear, and dry. In addition, ELRE is a very well sited station and is located on very slightly sloped terrain with no obstructions nearby. Four Portable Automated Research Micrometeorological Stations (PARMS) were deployed along a transect orthogonal to ELRE for 3 months in the spring of 2005 to quantify the micrometeorological processes that caused rapid cooling and subsequent strong inversions to form. One-minute data collected from the PARMS and ELRE during the study verified the variability and duration of strong inversion events. Analyses from the field study also revealed that significant horizontal and vertical differences in air temperature and wind speed existed during periods of differential wind speeds between the PARMS and ELRE.

Full access
Venkataramana Sridhar, Kenneth G. Hubbard, Jinsheng You, and Eric D. Hunt

Abstract

This paper examines the role of soil moisture in quantifying drought through the development of a drought index using observed and modeled soil moisture. In Nebraska, rainfall is received primarily during the crop-growing season and the supply of moisture from the Gulf of Mexico determines if the impending crop year is either normal or anomalous and any deficit of rain leads to a lack of soil moisture storage. Using observed soil moisture from the Automated Weather Data Network (AWDN), the actual available water content for plants is calculated as the difference between observed or modeled soil moisture and wilting point, which is subsequently normalized with the site-specific, soil property–based, idealistic available water for plants that is calculated as the difference between field capacity and wilting point to derive the soil moisture index (SMI). This index is categorized into five classes from no drought to extreme drought to quantitatively assess drought in both space and time. Additionally, with the aid of an in-house hydrology model, soil moisture was simulated in order to compute model-based SMI and to compare the drought duration and severity for various sites. The results suggest that the soil moisture influence, a positive feedback process reported in many earlier studies, is unquestionably a quantitative indicator of drought. Also, the severity and duration of drought across Nebraska has a clear gradient from west to east, with the Panhandle region experiencing severe to extreme drought in the deeper soil layers for longer periods (>200 days), than the central and southwestern regions (125–150 days) or the eastern regions about 100 days or less. The anomalous rainfall years can eliminate the distinction among these regions with regard to their drought extent, severity, and persistence, thus making drought a more ubiquitous phenomenon, but the recovery from drought can be subject to similar gradations. The spatial SMI maps presented in this paper can be used with the Drought Monitor maps to assess the local drought conditions more effectively.

Full access
Jordan I. Christian, Jeffrey B. Basara, Jason A. Otkin, Eric D. Hunt, Ryann A. Wakefield, Paul X. Flanagan, and Xiangming Xiao

Abstract

With the increasing use of the term “flash drought” within the scientific community, Otkin et al. provide a general definition that identifies flash droughts based on their unusually rapid rate of intensification. This study presents an objective percentile-based methodology that builds upon that work by identifying flash droughts using standardized evaporative stress ratio (SESR) values and changes in SESR over some period of time. Four criteria are specified to identify flash droughts: two that emphasize the vegetative impacts of flash drought and two that focus on the rapid rate of intensification. The methodology was applied to the North American Regional Reanalysis (NARR) to develop a 38-yr flash drought climatology (1979–2016) across the United States. It was found that SESR derived from NARR data compared well with the satellite-based evaporative stress index for four previously identified flash drought events. Furthermore, four additional flash drought cases were compared with the U.S. Drought Monitor (USDM), and SESR rapidly declined 1–2 weeks before a response was evident with the USDM. From the climatological analysis, a hot spot of flash drought occurrence was revealed over the Great Plains, the Corn Belt, and the western Great Lakes region. Relatively few flash drought events occurred over mountainous and arid regions. Flash droughts were categorized based on their rate of intensification, and it was found that the most intense flash droughts occurred over the central Great Plains, Corn Belt, and western Great Lakes region.

Full access
Yi Liu, Ye Zhu, Liliang Ren, Jason Otkin, Eric D. Hunt, Xiaoli Yang, Fei Yuan, and Shanhu Jiang

Abstract

Flash droughts are extreme phenomena that have been identified using two different approaches. The first approach identifies these events based on unusually rapid intensification rates, whereas the second approach implicitly identifies short-term features. This latter approach classifies flash droughts into two types, namely, precipitation deficit and heat wave flash droughts (denoted as PDFD and HWFD). In this study, we evaluate these two approaches over the Yellow River basin (YRB) to determine which approach provides more accurate information about flash droughts and why. Based on the concept of intensification rate, a new quantitative flash drought identification method focused on soil moisture depletion during the onset–development phase is proposed. Its performance was evaluated by comparing the onset time and spatial dynamics of the identified flash droughts with PDFD and HWFD events identified using the second approach. The results show that the rapid-intensification approach is better able to capture the continuous evolution of a flash drought. Since the approach for identifying PDFD and HWFD events does not consider changes in soil moisture with time, it cannot ensure that the events exhibit rapid intensification, nor can it effectively capture flash droughts’ onset. Evaluation of the results showed that the chosen hydrometeorological variables and corresponding thresholds, particularly that of temperature, are the main reasons for the poor performance of the PDFD and HWFD identification approach. This study promotes a deeper understanding of flash droughts that is beneficial for drought monitoring, early warning, and mitigation.

Restricted access
Jason A. Otkin, Yafang Zhong, Eric D. Hunt, Jeff Basara, Mark Svoboda, Martha C. Anderson, and Christopher Hain

Abstract

This study examines the evolution of soil moisture, evapotranspiration, vegetation, and atmospheric conditions during an unusual flash drought–flash recovery sequence that occurred across the south-central United States during 2015. This event was characterized by a period of rapid drought intensification (flash drought) during late summer that was terminated by heavy rainfall at the end of October that eliminated the extreme drought conditions over a 2-week period (flash recovery). A detailed analysis was performed using time series of environmental variables derived from meteorological, remote sensing, and land surface modeling datasets. Though the analysis revealed a similar progression of cascading effects in each region, characteristics of the flash drought such as its onset time, rate of intensification, and vegetation impacts differed between regions due to variations in the antecedent conditions and the atmospheric anomalies during its growth. Overall, flash drought signals initially appeared in the near-surface soil moisture, followed closely by reductions in evapotranspiration. Total column soil moisture deficits took longer to develop, especially in the western part of the region where heavy rainfall during the spring and early summer led to large moisture surpluses. Large differences were noted in how land surface models in the North American Land Data Assimilation System depicted soil moisture evolution during the flash drought; however, the models were more similar in their assessment of conditions during the flash recovery period. This study illustrates the need to use multiple datasets to track the evolution and impacts of rapidly evolving flash drought and flash recovery events.

Full access
Jason A. Otkin, Mark Svoboda, Eric D. Hunt, Trent W. Ford, Martha C. Anderson, Christopher Hain, and Jeffrey B. Basara

Abstract

Given the increasing use of the term “flash drought” by the media and scientific community, it is prudent to develop a consistent definition that can be used to identify these events and to understand their salient characteristics. It is generally accepted that flash droughts occur more often during the summer owing to increased evaporative demand; however, two distinct approaches have been used to identify them. The first approach focuses on their rate of intensification, whereas the second approach implicitly focuses on their duration. These conflicting notions for what constitutes a flash drought (i.e., unusually fast intensification vs short duration) introduce ambiguity that affects our ability to detect their onset, monitor their development, and understand the mechanisms that control their evolution. Here, we propose that the definition for “flash drought” should explicitly focus on its rate of intensification rather than its duration, with droughts that develop much more rapidly than normal identified as flash droughts. There are two primary reasons for favoring the intensification approach over the duration approach. First, longevity and impact are fundamental characteristics of drought. Thus, short-term events lasting only a few days and having minimal impacts are inconsistent with the general understanding of drought and therefore should not be considered flash droughts. Second, by focusing on their rapid rate of intensification, the proposed “flash drought” definition highlights the unique challenges faced by vulnerable stakeholders who have less time to prepare for its adverse effects.

Open access
David Kuhl, Istvan Szunyogh, Eric J. Kostelich, Gyorgyi Gyarmati, D. J. Patil, Michael Oczkowski, Brian R. Hunt, Eugenia Kalnay, Edward Ott, and James A. Yorke

Abstract

In this paper, the spatiotemporally changing nature of predictability is studied in a reduced-resolution version of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS), a state-of-the-art numerical weather prediction model. Atmospheric predictability is assessed in the perfect model scenario for which forecast uncertainties are entirely due to uncertainties in the estimates of the initial states. Uncertain initial conditions (analyses) are obtained by assimilating simulated noisy vertical soundings of the “true” atmospheric states with the local ensemble Kalman filter (LEKF) data assimilation scheme. This data assimilation scheme provides an ensemble of initial conditions. The ensemble mean defines the initial condition of 5-day deterministic model forecasts, while the time-evolved members of the ensemble provide an estimate of the evolving forecast uncertainties. The observations are randomly distributed in space to ensure that the geographical distribution of the analysis and forecast errors reflect predictability limits due to the model dynamics and are not affected by inhomogeneities of the observational coverage.

Analysis and forecast error statistics are calculated for the deterministic forecasts. It is found that short-term forecast errors tend to grow exponentially in the extratropics and linearly in the Tropics. The behavior of the ensemble is explained by using the ensemble dimension (E dimension), a spatiotemporally evolving measure of the evenness of the distribution of the variance between the principal components of the ensemble-based forecast error covariance matrix.

It is shown that in the extratropics the largest forecast errors occur for the smallest E dimensions. Since a low value of the E dimension guarantees that the ensemble can capture a large portion of the forecast error, the larger the forecast error the more certain that the ensemble can fully capture the forecast error. In particular, in regions of low E dimension, ensemble averaging is an efficient error filter and the ensemble spread provides an accurate prediction of the upper bound of the error in the ensemble-mean forecast.

Full access