Search Results

You are looking at 1 - 10 of 62 items for

  • Author or Editor: Eric D. Maloney x
  • Refine by Access: All Content x
Clear All Modify Search
Eric D. Maloney

Abstract

The intraseasonal moist static energy (MSE) budget is analyzed in a climate model that produces realistic eastward-propagating tropical intraseasonal wind and precipitation variability. Consistent with the recharge–discharge paradigm for tropical intraseasonal variability, a buildup of column-integrated MSE occurs within low-level easterly anomalies in advance of intraseasonal precipitation, and a discharge of MSE occurs during and after precipitation when westerly anomalies occur. The strongest MSE anomalies peak in the lower troposphere and are, primarily, regulated by specific humidity anomalies.

The leading terms in the column-integrated intraseasonal MSE budget are horizontal advection and surface latent heat flux, where latent heat flux is dominated by the wind-driven component. Horizontal advection causes recharge (discharge) of MSE within regions of anomalous equatorial lower-tropospheric easterly (westerly) anomalies, with the meridional component of the moisture advection dominating the MSE budget near 850 hPa. Latent heat flux anomalies oppose the MSE tendency due to horizontal advection, making the recharge and discharge of column MSE more gradual than if horizontal advection were acting alone. This relationship has consequences for the time scale of intraseasonal variability in the model.

Eddies dominate intraseasonal meridional moisture advection in the model. During periods of low-level intraseasonal easterly anomalies, eddy kinetic energy (EKE) is anomalously low due to a suppression of tropical synoptic-scale disturbances and other variability on time scales shorter than 20 days. Anomalous moistening of the equatorial lower troposphere occurs during intraseasonal easterly periods through suppression of eddy moisture advection between the equator and poleward latitudes. During intraseasonal westerly periods, EKE is enhanced, leading to anomalous drying of the equatorial lower troposphere through meridional advection. Given the importance of meridional moisture advection and wind-induced latent heat flux to the intraseasonal MSE budget, these findings suggest that to simulate realistic intraseasonal variability, climate models must have realistic basic-state distributions of lower-tropospheric zonal wind and specific humidity.

Full access
Eric D. Maloney

Abstract

The NCAR CCM3.6 with microphysics of clouds with relaxed Arakawa–Schubert convection produces an intraseasonal oscillation that is highly dependent on lower-tropospheric moistening by surface convergence. Model intraseasonal convection is most highly correlated with surface convergence at zero lag, causing enhanced convection to be associated with 850-mb easterly anomalies, where surface convergence is strongest. The tendency for surface convergence to maximize within 850-mb easterly anomalies is consistent with meridional frictional convergence into equatorial surface pressure troughs associated with planetary-scale tropical wave circulations. Anomalous vertical advection associated with meridional surface convergence influences model convection by moistening the lower troposphere. Observed Madden–Julian oscillation (MJO) convection and lower-tropospheric specific humidity are also significantly correlated with surface convergence, although correlations are weaker than in the model, and convergence leads convection anomalies. Observed MJO enhanced convection tends to fall closer to the point of maximum convergence in the 850-mb equatorial zonal wind anomaly field. Although surface convergence appears important for both observed and model intraseasonal convection, the significant differences between observed and modeled intraseasonal variability suggest that interactions between convection and the large-scale circulation in the model are not completely realistic.

The wind-induced surface heat exchange (WISHE) mechanism cannot explain the preference for model intraseasonal enhanced convection to coincide with 850-mb easterly anomalies. When the effects of WISHE are removed by fixing the surface wind speed in the calculation of surface latent heat fluxes, the phase relationship between model intraseasonal wind and convection anomalies does not change. Removing WISHE may produce a more robust model intraseasonal oscillation, however. Model intraseasonal oscillation circulation features are better defined, and spectral power in the MJO band is more prominent when WISHE is removed.

Full access
Eric D. Maloney
and
Jeffrey Shaman

Abstract

Intraseasonal variability of boreal summer rainfall and winds in tropical West Africa and the east Atlantic is examined using daily Tropical Rainfall Measuring Mission (TRMM) precipitation and the NCEP–NCAR reanalysis during 1998–2006. Intraseasonal precipitation variability is dominated by two significant spectral peaks at time scales near 15 and 50 days, accompanied by corresponding peaks in eddy kinetic energy (EKE) and eddy enstrophy. Regional precipitation variability on 30–90-day time scales is significantly correlated (+0.6) with a global Madden–Julian oscillation time series based on equatorial zonal winds, supporting the results of A. J. Matthews. The overall amplitude of the 30–90-day West African monsoon precipitation variability during a given summer, however, does not appear to be strongly regulated by interannual variability in MJO amplitude.

Composite analysis and complex empirical orthogonal function analysis shows that 30–90-day precipitation anomalies are generally zonally elongated, grow and decay in place, and have maximum amplitude near the Gulf of Guinea and in the Atlantic ITCZ. Composite 30–90-day enhanced precipitation events are accompanied by a significant suppression of eastern North Atlantic trade winds. Suppressed 30–90-day precipitation events are associated with an enhancement of the Atlantic trade winds. Enhanced (suppressed) EKE occurs just to the north of the east Atlantic ITCZ during positive (negative) 30–90-day precipitation events, with the maximum EKE magnitude lagging precipitation events by about 5 days.

East Atlantic tropical cyclone activity is significantly modulated on intraseasonal time scales. The number of tropical cyclones that occur in the Atlantic’s main development region to the east of 60°W is suppressed about 5–10 days before maxima in a regional intraseasonal precipitation time series, and enhanced about 5–10 days after time series maxima. An analysis of east Atlantic tropical cyclone activity based on an equatorial MJO index produces similar results. Consistent with the results of K. C. Mo, variations in vertical shear may help explain this modulation of tropical cyclone activity.

Full access
Eric D. Maloney
and
Chidong Zhang

Abstract

This chapter reviews Professor Michio Yanai’s contributions to the discovery and science of the Madden–Julian oscillation (MJO). Professor Yanai’s work on equatorial waves played an inspirational role in the MJO discovery by Roland Madden and Paul Julian. Professor Yanai also made direct and important contributions to MJO research. These research contributions include work on the vertically integrated moist static energy budget, cumulus momentum transport, eddy available potential energy and eddy kinetic energy budgets, and tropical–extratropical interactions. Finally, Professor Yanai left a legacy through his students, who continue to push the bounds of MJO research.

Full access
Eric D. Maloney
and
Dennis L. Hartmann

Abstract

Low-level barotropic dynamics may help to explain the modulation of eastern and western North Pacific tropical cyclones by the Madden–Julian oscillation (MJO) during Northern Hemisphere summer. The MJO is characterized by alternating periods of westerly and easterly 850-mb zonal wind anomalies across the tropical Pacific Ocean. When MJO 850-mb wind anomalies are westerly, small-scale, slow-moving eddies grow through barotropic eddy kinetic energy (EKE) conversion from the mean flow. These growing eddies, together with strong surface convergence, 850-mb cyclonic shear, and high mean sea surface temperatures, create a favorable environment for tropical cyclone formation. Periods of strong MJO easterlies over the Pacific are characterized by lesser EKE and negligible eddy growth by barotropic conversion.

The term − u2 u /∂x is a leading contributor to low-level barotropic EKE conversion during MJO westerly periods across the Pacific, indicating the importance of zonal variations in the westerly jet for producing concentrations of eddy energy. This mechanism can be described as wave accumulation associated with variations of the low-level zonal flow. The conversion term − uυ u /∂y contributes a smaller portion of the total conversion over the eastern Pacific, but is of comparable importance to − u2 u /∂x during westerly MJO events in the western Pacific.

Full access
Michael B. Natoli
and
Eric D. Maloney

Abstract

Precipitation in the region surrounding the South China Sea over land and coastal waters exhibits a strong diurnal cycle associated with a land–sea temperature contrast that drives a sea-breeze circulation. The boreal summer intraseasonal oscillation (BSISO) is an important modulator of diurnal precipitation patterns, an understanding of which is a primary goal of the field campaign Propagation of Intraseasonal Tropical Oscillations (PISTON). Using 21 years of CMORPH precipitation for Luzon Island in the northern Philippines, it is shown that the diurnal cycle amplitude is generally maximized over land roughly 1 week before the arrival of the broader oceanic convective envelope associated with the BSISO. A strong diurnal cycle in coastal waters is observed in the transition from the inactive to active phase, associated with offshore propagation of the diurnal cycle. The diurnal cycle amplitude is in phase with daily mean precipitation over Mindanao but is nearly out of phase over Luzon. The BSISO influence on the diurnal cycle on the eastern side of topography is nearly opposite to that on the western side. Using wind, moisture, and radiation products from the ERA5 reanalysis, it is proposed that the enhanced diurnal cycle west of the mountains during BSISO suppressed phases is related to increased insolation and weaker prevailing onshore winds that promote a stronger sea-breeze circulation when compared with the May–October mean state. Offshore propagation is suppressed until ambient midlevel moisture increases over the surrounding oceans during the transition to the active BSISO phase. In BSISO enhanced phases, strong low-level winds and increased cloudiness suppress the sea-breeze circulation.

Free access
Ghassan J. Alaka Jr.
and
Eric D. Maloney

Abstract

The Madden–Julian oscillation (MJO) produces alternating periods of increased and reduced precipitation and African easterly wave (AEW) activity in West Africa. This study documents the influence of the MJO on the West African monsoon system during boreal summer using reanalysis and brightness temperature fields. MJO-related West African convective anomalies are likely induced by equatorial Kelvin and Rossby waves generated in the Indian Ocean and West Pacific by the MJO, which is consistent with previous studies. The initial modulation of tropical African convection occurs upstream of West Africa, near the entrance of the African easterly jet (AEJ). Previous studies have hypothesized that an area to the east of Lake Chad is an initiation region for AEWs. Called the “trigger region” in this study, this area exhibits significant intraseasonal convection and wave activity anomalies prior to the wet and dry MJO phases in the West African monsoon region.

In the trigger region, cold tropospheric temperature anomalies and high precipitable water, as well as an eastward extension of the African easterly jet, appear to precede and contribute to the wet MJO phase in West Africa. An anomalous stratiform heating profile is observed in advance of the wet MJO phase with anomalous PV generation maximized at the jet level. The opposite behavior occurs in advance of the dry MJO phase. The moisture budget is examined to provide further insight as to how the MJO modulates and initiates precipitation and AEW variability in this region. In particular, meridional moisture advection anomalies foster moistening in the trigger region in advance of the wet MJO phase across West Africa.

Full access
Eric D. Maloney
and
Dudley B. Chelton

Abstract

The ability of six climate models to capture the observed coupling between SST and surface wind stress in the vicinity of strong midlatitude SST fronts is analyzed. The analysis emphasizes air–sea interactions associated with ocean meanders in the eastward extensions of major western boundary current systems such as the Gulf Stream, Kuroshio, and Agulhas Current. Satellite observations of wind stress from the SeaWinds scatterometer on NASA’s Quick Scatterometer and SST from the Advanced Microwave Scanning Radiometer clearly indicate the influence of SST on surface wind stress on scales smaller than about 30° longitude × 10° latitude. Spatially high-pass-filtered SST and wind stress variations are linearly related, with higher SST associated with higher wind stress. The influence of SST on wind stress is also clearly identifiable in the ECMWF operational forecast model, having a grid resolution of 0.35° × 0.35° (T511). However, the coupling coefficient between wind stress and SST, as indicated by the slope of the linear least squares fit, is only half as strong as for satellite observations.

The ability to simulate realistic air–sea interactions is present to varying degrees in the coupled climate models examined. The Model for Interdisciplinary Research on Climate 3.2 (MIROC3.2) high-resolution version (HIRES) (1.1° × 1.1°, T106) and the NCAR Community Climate System Model 3.0 (1.4° × 1.4°, T85) are the highest-resolution models considered and produce the most realistic air–sea coupling associated with midlatitude current systems. Coupling coefficients between SST and wind stress in MIROC3.2_HIRES and the NCAR model are at least comparable to those in the ECMWF operational model. The spatial scales of midlatitude SST variations and SST-induced wind perturbations in MIROC3.2_HIRES are comparable to those of satellite observations. The spatial scales of SST variability in the NCAR model are larger than those in the ECMWF model and satellite observations, and hence the spatial scales of SST-induced perturbations in the wind fields are larger.

It is found that the ability of climate models to simulate air–sea interactions degrades with decreasing grid resolution. SST anomalies in the GFDL Climate Model 2.0 (CM2.0) (2.0° × 2.5°), Met Office Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) (2.5° × 3.8°), and MIROC3.2 medium-resolution version (MEDRES) (2.8° × 2.8°, T42) have larger spatial scales and are more geographically confined than in the higher-resolution models. The GISS Model E20/Russell (4.0° × 5.0°) is unable to resolve the midlatitude ocean eddies that produce prominent air–sea interaction. Notably, MIROC3.2_MEDRES exhibits much weaker coupling between wind stress and SST than does the higher vertical and horizontal resolution version of the same model. GFDL CM2.0 and Met Office HadCM3 exhibit a linear relationship between SST and wind stress. However, coupling coefficients for the Met Office model are significantly weaker than in the GFDL and higher-resolution models. In addition to model grid resolution (both vertical and horizontal), deficiencies in the parameterization of boundary layer processes may be responsible for some of these differences in air–sea coupling between models and observations.

Full access
Walter M. Hannah
and
Eric D. Maloney

Abstract

The sensitivity of a simulated Madden–Julian oscillation (MJO) was investigated in the NCAR Community Atmosphere Model 3.1 with the relaxed Arakawa–Schubert convection scheme by analyzing the model’s response to varying the strength of two moisture sensitivity parameters. A higher value of either the minimum entrainment rate or rain evaporation fraction results in increased intraseasonal variability, a more coherent MJO, and enhanced moisture–convection feedbacks in the model. Changes to the mean state are inconsistent between the two methods. Increasing the minimum entrainment leads to a cooler and drier troposphere, whereas increasing the rain evaporation fraction causes warming and moistening. These results suggest that no straightforward correspondence exists between the MJO and the mean humidity, contrary to previous studies.

Analysis of the mean column-integrated and normalized moist static energy (MSE) budget reveals a substantial reduction of gross moist stability (GMS) for increased minimum entrainment, while no significant changes are found for an increased evaporation fraction. However, when considering fluctuations of the normalized MSE budget terms during MJO events, both methods result in negative GMS prior to the deep convective phase of the MJO. Intraseasonal fluctuations of GMS, rather than the mean, appear to be a better diagnostic quantity for testing a model’s ability to produce an MJO.

Full access
Eric D. Maloney
and
Dennis L. Hartmann

Abstract

The National Center for Atmospheric Research (NCAR) Community Climate Model, version 3.6 (CCM3) simulation of tropical intraseasonal variability in zonal winds and precipitation can be improved by implementing the microphysics of cloud with relaxed Arakawa–Schubert (McRAS) convection scheme of Sud and Walker. The default CCM3 convection scheme of Zhang and McFarlane produces intraseasonal variability in both zonal winds and precipitation that is much lower than is observed. The convection scheme of Hack produces high tropical intraseasonal zonal wind variability but no coherent convective variability at intraseasonal timescales and low wavenumbers. The McRAS convection scheme produces realistic variability in tropical intraseasonal zonal winds and improved intraseasonal variability in tropical precipitation, although the variability in precipitation is somewhat less than is observed. Intraseasonal variability in CCM3 with the McRAS scheme is highly sensitive to the parameterization of convective precipitation evaporation in unsaturated environmental air and unsaturated downdrafts. Removing these effects greatly reduces intraseasonal variability in the model. Convective evaporation processes in McRAS affect intraseasonal variability mainly through their time-mean effects and not through their variations. Convective rain evaporation and unsaturated downdrafts improve the modeled specific humidity and temperature climates of the Tropics and increase convection on the equator. Intraseasonal variability in CCM3 with McRAS is not improved by increasing the boundary layer relative humidity threshold for initiation of convection, contrary to the results of Wang and Schlesinger. In fact, intraseasonal variability is reduced for higher thresholds. The largest intraseasonal moisture variations during a model Madden–Julian oscillation life cycle occur above the boundary layer, and humidity variations within the boundary layer are small.

Full access