Search Results
You are looking at 1 - 10 of 82 items for
- Author or Editor: Eric Maloney x
- Refine by Access: All Content x
Abstract
The authors present a simple semi-empirical model to explore the hypothesis that the Madden–Julian oscillation can be represented as a moisture mode destabilized by surface flux and cloud–radiative feedbacks. The model is one-dimensional in longitude; the vertical and meridional structure is entirely implicit. The only prognostic variable is column water vapor W. The zonal wind field is an instantaneous diagnostic function of the precipitation field.
The linearized version of the model has only westward-propagating (relative to the mean flow) unstable modes because wind-induced surface latent heat flux anomalies occur to the west of precipitation anomalies. The maximum growth rate occurs at the wavelength at which the correlation between precipitation and surface latent heat flux is maximized. This wavelength lies in the synoptic- to planetary-scale range and is proportional to the horizontal scale associated with the assumed diagnostic wind response to precipitation anomalies.
The nonlinear version of the model has behavior that can be qualitatively different from the linear modes and is strongly influenced by horizontal advection of moisture. The nonlinear solutions are very sensitive to small shifts in the phasing of wind and precipitation. Under some circumstances nonlinear eastward-propagating disturbances emerge on a state of mean background westerlies. These disturbances have a shocklike discontinuous jump in humidity and rainfall at the leading edge; humidity decreases linearly and precipitation decreases exponentially to the west.
Abstract
The authors present a simple semi-empirical model to explore the hypothesis that the Madden–Julian oscillation can be represented as a moisture mode destabilized by surface flux and cloud–radiative feedbacks. The model is one-dimensional in longitude; the vertical and meridional structure is entirely implicit. The only prognostic variable is column water vapor W. The zonal wind field is an instantaneous diagnostic function of the precipitation field.
The linearized version of the model has only westward-propagating (relative to the mean flow) unstable modes because wind-induced surface latent heat flux anomalies occur to the west of precipitation anomalies. The maximum growth rate occurs at the wavelength at which the correlation between precipitation and surface latent heat flux is maximized. This wavelength lies in the synoptic- to planetary-scale range and is proportional to the horizontal scale associated with the assumed diagnostic wind response to precipitation anomalies.
The nonlinear version of the model has behavior that can be qualitatively different from the linear modes and is strongly influenced by horizontal advection of moisture. The nonlinear solutions are very sensitive to small shifts in the phasing of wind and precipitation. Under some circumstances nonlinear eastward-propagating disturbances emerge on a state of mean background westerlies. These disturbances have a shocklike discontinuous jump in humidity and rainfall at the leading edge; humidity decreases linearly and precipitation decreases exponentially to the west.
Abstract
The authors discuss modifications to a simple linear model of intraseasonal moisture modes. Wind–evaporation feedbacks were shown in an earlier study to induce westward propagation in an eastward mean low-level flow in this model. Here additional processes, which provide effective sources of moist static energy to the disturbances and which also depend on the low-level wind, are considered. Several processes can act as positive sources in perturbation easterlies: zonal advection (if the mean zonal moisture gradient is eastward), modulation of synoptic eddy drying by the MJO-scale wind perturbations, and frictional convergence. If the sum of these is stronger than the wind–evaporation feedback—as observations suggest may be the case, though with considerable uncertainty—the model produces unstable modes that propagate weakly eastward relative to the mean flow. With a small amount of horizontal diffusion or other scale-selective damping, the growth rate is greatest at the largest horizontal scales and decreases monotonically with wavenumber.
Abstract
The authors discuss modifications to a simple linear model of intraseasonal moisture modes. Wind–evaporation feedbacks were shown in an earlier study to induce westward propagation in an eastward mean low-level flow in this model. Here additional processes, which provide effective sources of moist static energy to the disturbances and which also depend on the low-level wind, are considered. Several processes can act as positive sources in perturbation easterlies: zonal advection (if the mean zonal moisture gradient is eastward), modulation of synoptic eddy drying by the MJO-scale wind perturbations, and frictional convergence. If the sum of these is stronger than the wind–evaporation feedback—as observations suggest may be the case, though with considerable uncertainty—the model produces unstable modes that propagate weakly eastward relative to the mean flow. With a small amount of horizontal diffusion or other scale-selective damping, the growth rate is greatest at the largest horizontal scales and decreases monotonically with wavenumber.
Abstract
The NCAR CCM3.6 with microphysics of clouds with relaxed Arakawa–Schubert convection produces an intraseasonal oscillation that is highly dependent on lower-tropospheric moistening by surface convergence. Model intraseasonal convection is most highly correlated with surface convergence at zero lag, causing enhanced convection to be associated with 850-mb easterly anomalies, where surface convergence is strongest. The tendency for surface convergence to maximize within 850-mb easterly anomalies is consistent with meridional frictional convergence into equatorial surface pressure troughs associated with planetary-scale tropical wave circulations. Anomalous vertical advection associated with meridional surface convergence influences model convection by moistening the lower troposphere. Observed Madden–Julian oscillation (MJO) convection and lower-tropospheric specific humidity are also significantly correlated with surface convergence, although correlations are weaker than in the model, and convergence leads convection anomalies. Observed MJO enhanced convection tends to fall closer to the point of maximum convergence in the 850-mb equatorial zonal wind anomaly field. Although surface convergence appears important for both observed and model intraseasonal convection, the significant differences between observed and modeled intraseasonal variability suggest that interactions between convection and the large-scale circulation in the model are not completely realistic.
The wind-induced surface heat exchange (WISHE) mechanism cannot explain the preference for model intraseasonal enhanced convection to coincide with 850-mb easterly anomalies. When the effects of WISHE are removed by fixing the surface wind speed in the calculation of surface latent heat fluxes, the phase relationship between model intraseasonal wind and convection anomalies does not change. Removing WISHE may produce a more robust model intraseasonal oscillation, however. Model intraseasonal oscillation circulation features are better defined, and spectral power in the MJO band is more prominent when WISHE is removed.
Abstract
The NCAR CCM3.6 with microphysics of clouds with relaxed Arakawa–Schubert convection produces an intraseasonal oscillation that is highly dependent on lower-tropospheric moistening by surface convergence. Model intraseasonal convection is most highly correlated with surface convergence at zero lag, causing enhanced convection to be associated with 850-mb easterly anomalies, where surface convergence is strongest. The tendency for surface convergence to maximize within 850-mb easterly anomalies is consistent with meridional frictional convergence into equatorial surface pressure troughs associated with planetary-scale tropical wave circulations. Anomalous vertical advection associated with meridional surface convergence influences model convection by moistening the lower troposphere. Observed Madden–Julian oscillation (MJO) convection and lower-tropospheric specific humidity are also significantly correlated with surface convergence, although correlations are weaker than in the model, and convergence leads convection anomalies. Observed MJO enhanced convection tends to fall closer to the point of maximum convergence in the 850-mb equatorial zonal wind anomaly field. Although surface convergence appears important for both observed and model intraseasonal convection, the significant differences between observed and modeled intraseasonal variability suggest that interactions between convection and the large-scale circulation in the model are not completely realistic.
The wind-induced surface heat exchange (WISHE) mechanism cannot explain the preference for model intraseasonal enhanced convection to coincide with 850-mb easterly anomalies. When the effects of WISHE are removed by fixing the surface wind speed in the calculation of surface latent heat fluxes, the phase relationship between model intraseasonal wind and convection anomalies does not change. Removing WISHE may produce a more robust model intraseasonal oscillation, however. Model intraseasonal oscillation circulation features are better defined, and spectral power in the MJO band is more prominent when WISHE is removed.
Abstract
The intraseasonal moist static energy (MSE) budget is analyzed in a climate model that produces realistic eastward-propagating tropical intraseasonal wind and precipitation variability. Consistent with the recharge–discharge paradigm for tropical intraseasonal variability, a buildup of column-integrated MSE occurs within low-level easterly anomalies in advance of intraseasonal precipitation, and a discharge of MSE occurs during and after precipitation when westerly anomalies occur. The strongest MSE anomalies peak in the lower troposphere and are, primarily, regulated by specific humidity anomalies.
The leading terms in the column-integrated intraseasonal MSE budget are horizontal advection and surface latent heat flux, where latent heat flux is dominated by the wind-driven component. Horizontal advection causes recharge (discharge) of MSE within regions of anomalous equatorial lower-tropospheric easterly (westerly) anomalies, with the meridional component of the moisture advection dominating the MSE budget near 850 hPa. Latent heat flux anomalies oppose the MSE tendency due to horizontal advection, making the recharge and discharge of column MSE more gradual than if horizontal advection were acting alone. This relationship has consequences for the time scale of intraseasonal variability in the model.
Eddies dominate intraseasonal meridional moisture advection in the model. During periods of low-level intraseasonal easterly anomalies, eddy kinetic energy (EKE) is anomalously low due to a suppression of tropical synoptic-scale disturbances and other variability on time scales shorter than 20 days. Anomalous moistening of the equatorial lower troposphere occurs during intraseasonal easterly periods through suppression of eddy moisture advection between the equator and poleward latitudes. During intraseasonal westerly periods, EKE is enhanced, leading to anomalous drying of the equatorial lower troposphere through meridional advection. Given the importance of meridional moisture advection and wind-induced latent heat flux to the intraseasonal MSE budget, these findings suggest that to simulate realistic intraseasonal variability, climate models must have realistic basic-state distributions of lower-tropospheric zonal wind and specific humidity.
Abstract
The intraseasonal moist static energy (MSE) budget is analyzed in a climate model that produces realistic eastward-propagating tropical intraseasonal wind and precipitation variability. Consistent with the recharge–discharge paradigm for tropical intraseasonal variability, a buildup of column-integrated MSE occurs within low-level easterly anomalies in advance of intraseasonal precipitation, and a discharge of MSE occurs during and after precipitation when westerly anomalies occur. The strongest MSE anomalies peak in the lower troposphere and are, primarily, regulated by specific humidity anomalies.
The leading terms in the column-integrated intraseasonal MSE budget are horizontal advection and surface latent heat flux, where latent heat flux is dominated by the wind-driven component. Horizontal advection causes recharge (discharge) of MSE within regions of anomalous equatorial lower-tropospheric easterly (westerly) anomalies, with the meridional component of the moisture advection dominating the MSE budget near 850 hPa. Latent heat flux anomalies oppose the MSE tendency due to horizontal advection, making the recharge and discharge of column MSE more gradual than if horizontal advection were acting alone. This relationship has consequences for the time scale of intraseasonal variability in the model.
Eddies dominate intraseasonal meridional moisture advection in the model. During periods of low-level intraseasonal easterly anomalies, eddy kinetic energy (EKE) is anomalously low due to a suppression of tropical synoptic-scale disturbances and other variability on time scales shorter than 20 days. Anomalous moistening of the equatorial lower troposphere occurs during intraseasonal easterly periods through suppression of eddy moisture advection between the equator and poleward latitudes. During intraseasonal westerly periods, EKE is enhanced, leading to anomalous drying of the equatorial lower troposphere through meridional advection. Given the importance of meridional moisture advection and wind-induced latent heat flux to the intraseasonal MSE budget, these findings suggest that to simulate realistic intraseasonal variability, climate models must have realistic basic-state distributions of lower-tropospheric zonal wind and specific humidity.
Abstract
The “barrier effect” of the Maritime Continent (MC) is a known hurdle in understanding the propagation of the Madden–Julian oscillation (MJO). To understand the differing dynamics of MJO events that propagate versus stall over the MC, a new tracking algorithm utilizing 30–96-day-filtered NOAA Interpolated OLR anomalies is presented. Using this algorithm, MJO events can be identified, tracked, and described in terms of their propagation characteristics. Latent heat flux from OAFlux and CYGNSS surface winds and fluxes are compared for MJO events that do and do not propagate through the MC. Events that successfully propagate through the MC demonstrate regional surface flux anomalies that are stronger, more spatially coherent, and have a larger fetch. The spatial scale of convective anomalies for events that successfully propagate through the MC region is also larger than for terminating events. Large-scale enhancement of latent heat fluxes near and to the east of the date line, equally driven by dynamic and thermodynamic effects, also accompanies MJO events that successfully propagate through the MC. These findings are placed in the context of recent theoretical models of the MJO in which latent heat fluxes are important for propagation and destabilization.
Abstract
The “barrier effect” of the Maritime Continent (MC) is a known hurdle in understanding the propagation of the Madden–Julian oscillation (MJO). To understand the differing dynamics of MJO events that propagate versus stall over the MC, a new tracking algorithm utilizing 30–96-day-filtered NOAA Interpolated OLR anomalies is presented. Using this algorithm, MJO events can be identified, tracked, and described in terms of their propagation characteristics. Latent heat flux from OAFlux and CYGNSS surface winds and fluxes are compared for MJO events that do and do not propagate through the MC. Events that successfully propagate through the MC demonstrate regional surface flux anomalies that are stronger, more spatially coherent, and have a larger fetch. The spatial scale of convective anomalies for events that successfully propagate through the MC region is also larger than for terminating events. Large-scale enhancement of latent heat fluxes near and to the east of the date line, equally driven by dynamic and thermodynamic effects, also accompanies MJO events that successfully propagate through the MC. These findings are placed in the context of recent theoretical models of the MJO in which latent heat fluxes are important for propagation and destabilization.
Abstract
Tropical intraseasonal variability in the eastern North Pacific during June–September of 2000–03 is analyzed using satellite and buoy observations. Quick Scatterometer ocean vector winds and the Tropical Rainfall Measuring Mission (TRMM) precipitation indicate that periods of anomalous surface westerly flow over the east Pacific warm pool during a summertime intraseasonal oscillation (ISO) life cycle are generally associated with an enhancement of convection to the east of 120°W. An exception is a narrow band of suppressed precipitation along 8°N that is associated with negative column-integrated precipitable water anomalies and anticyclonic vorticity anomalies. Periods of surface easterly anomalies are generally associated with suppressed convection to the east of 120°W. Summertime wind jets in the Gulfs of Tehuantepec and Papagayo exhibit heightened activity during periods of ISO easterly anomalies and suppressed convection. Strong variations in east Pacific warm pool wind speed occur in association with the summertime ISO. Anomalous ISO westerly flow is generally accompanied by enhanced wind speed to the east of 120°W, while anomalous easterly flow is associated with suppressed wind speed. Intraseasonal vector wind anomalies added to the climatological flow account for the bulk of the wind speed enhancement in the warm pool during the westerly phase, while the easterly phase shows strong contributions to the negative wind speed anomaly from both intraseasonal vector wind anomalies and suppressed synoptic-scale eddy activity. An analysis using Tropical Atmosphere Ocean buoys and TRMM precipitation suggests that wind–evaporation feedback is important for supporting summertime intraseasonal convection over the east Pacific warm pool. A statistically significant correlation of 0.6 between intraseasonal latent heat flux and precipitation occurs at the 12°N, 95°W buoy. Correlations between precipitation and latent heat flux at the 10°N, 95°W and 8°N, 95°W buoys are positive (0.4), but not statistically significant. Intraseasonal latent heat flux anomalies at all buoys are primarily wind induced. Consistent with the suppressed convection there during the ISO westerly phase, a negative but not statistically significant correlation (−0.3) occurs between precipitation and latent heat flux at the 8°N, 110°W buoy.
Abstract
Tropical intraseasonal variability in the eastern North Pacific during June–September of 2000–03 is analyzed using satellite and buoy observations. Quick Scatterometer ocean vector winds and the Tropical Rainfall Measuring Mission (TRMM) precipitation indicate that periods of anomalous surface westerly flow over the east Pacific warm pool during a summertime intraseasonal oscillation (ISO) life cycle are generally associated with an enhancement of convection to the east of 120°W. An exception is a narrow band of suppressed precipitation along 8°N that is associated with negative column-integrated precipitable water anomalies and anticyclonic vorticity anomalies. Periods of surface easterly anomalies are generally associated with suppressed convection to the east of 120°W. Summertime wind jets in the Gulfs of Tehuantepec and Papagayo exhibit heightened activity during periods of ISO easterly anomalies and suppressed convection. Strong variations in east Pacific warm pool wind speed occur in association with the summertime ISO. Anomalous ISO westerly flow is generally accompanied by enhanced wind speed to the east of 120°W, while anomalous easterly flow is associated with suppressed wind speed. Intraseasonal vector wind anomalies added to the climatological flow account for the bulk of the wind speed enhancement in the warm pool during the westerly phase, while the easterly phase shows strong contributions to the negative wind speed anomaly from both intraseasonal vector wind anomalies and suppressed synoptic-scale eddy activity. An analysis using Tropical Atmosphere Ocean buoys and TRMM precipitation suggests that wind–evaporation feedback is important for supporting summertime intraseasonal convection over the east Pacific warm pool. A statistically significant correlation of 0.6 between intraseasonal latent heat flux and precipitation occurs at the 12°N, 95°W buoy. Correlations between precipitation and latent heat flux at the 10°N, 95°W and 8°N, 95°W buoys are positive (0.4), but not statistically significant. Intraseasonal latent heat flux anomalies at all buoys are primarily wind induced. Consistent with the suppressed convection there during the ISO westerly phase, a negative but not statistically significant correlation (−0.3) occurs between precipitation and latent heat flux at the 8°N, 110°W buoy.
Abstract
A real-time statistical model based on the work of Leroy and Wheeler is developed via multiple logistic regression to predict weekly tropical cyclone activity over the Atlantic and east Pacific basins. The predictors used in the model include a climatology of tropical cyclone genesis for each ocean basin, an El Niño–Southern Oscillation (ENSO) index, and two indices representing the propagating Madden–Julian oscillation (MJO). The Atlantic model also includes a predictor representing the variability of sea surface temperature (SST) in the Main Development Region (MDR). These predictors are suggested as useful for the prediction of tropical cyclogenesis based on previous work in the literature and are further confirmed in this study using basic statistics. Univariate logistic regression models are generated for each predictor in each region to ensure the choice of prediction scheme. Using all predictors, cross-validated hindcasts are developed out to a seven-week forecast lead. A formal stepwise predictor selection procedure is implemented to select the predictors used in each region at each forecast lead.
Brier skill scores and reliability diagrams are used to assess the skill and dependability of the models. Results show an increase in model skill over the time-varying climatology at predicting tropical cyclogenesis by the inclusion of the MJO out to a three-week forecast lead for the east Pacific and a two-week forecast lead for the Atlantic. The importance of ENSO and MDR SST for Atlantic genesis prediction is highlighted, and the uncertain effects of ENSO on east Pacific tropical cyclogenesis are revisited.
Abstract
A real-time statistical model based on the work of Leroy and Wheeler is developed via multiple logistic regression to predict weekly tropical cyclone activity over the Atlantic and east Pacific basins. The predictors used in the model include a climatology of tropical cyclone genesis for each ocean basin, an El Niño–Southern Oscillation (ENSO) index, and two indices representing the propagating Madden–Julian oscillation (MJO). The Atlantic model also includes a predictor representing the variability of sea surface temperature (SST) in the Main Development Region (MDR). These predictors are suggested as useful for the prediction of tropical cyclogenesis based on previous work in the literature and are further confirmed in this study using basic statistics. Univariate logistic regression models are generated for each predictor in each region to ensure the choice of prediction scheme. Using all predictors, cross-validated hindcasts are developed out to a seven-week forecast lead. A formal stepwise predictor selection procedure is implemented to select the predictors used in each region at each forecast lead.
Brier skill scores and reliability diagrams are used to assess the skill and dependability of the models. Results show an increase in model skill over the time-varying climatology at predicting tropical cyclogenesis by the inclusion of the MJO out to a three-week forecast lead for the east Pacific and a two-week forecast lead for the Atlantic. The importance of ENSO and MDR SST for Atlantic genesis prediction is highlighted, and the uncertain effects of ENSO on east Pacific tropical cyclogenesis are revisited.
Abstract
This chapter reviews Professor Michio Yanai’s contributions to the discovery and science of the Madden–Julian oscillation (MJO). Professor Yanai’s work on equatorial waves played an inspirational role in the MJO discovery by Roland Madden and Paul Julian. Professor Yanai also made direct and important contributions to MJO research. These research contributions include work on the vertically integrated moist static energy budget, cumulus momentum transport, eddy available potential energy and eddy kinetic energy budgets, and tropical–extratropical interactions. Finally, Professor Yanai left a legacy through his students, who continue to push the bounds of MJO research.
Abstract
This chapter reviews Professor Michio Yanai’s contributions to the discovery and science of the Madden–Julian oscillation (MJO). Professor Yanai’s work on equatorial waves played an inspirational role in the MJO discovery by Roland Madden and Paul Julian. Professor Yanai also made direct and important contributions to MJO research. These research contributions include work on the vertically integrated moist static energy budget, cumulus momentum transport, eddy available potential energy and eddy kinetic energy budgets, and tropical–extratropical interactions. Finally, Professor Yanai left a legacy through his students, who continue to push the bounds of MJO research.
Abstract
Processes associated with the local amplification of easterly waves (EWs) in the east Pacific warm pool are explored. Developing EWs favor convection in the southwest and northeast quadrants of the disturbance. In nascent EWs, convection favors the southwest quadrant. As the EW life cycle progresses, convection in the northeast quadrant becomes increasingly prominent and southwest quadrant convection wanes. The EW moisture budget reveals that anomalous meridional winds acting on the mean meridional moisture gradient of the ITCZ produce moisture anomalies supportive of convection in the southwest quadrant early in the EW life cycle. As EWs mature, moisture anomalies on the poleward side of the EW begin to grow and are supported by the advection of anomalous moisture by the mean zonal wind.
In the southwest and northeast portions of the wave, where convection anomalies are favored, lower-tropospheric vorticity is generated locally through vertical stretching that supports a horizontal tilt of the wave from the southwest to the northeast. EWs with such tilts are then able to draw energy via barotropic conversion from the background cyclonic zonal wind shear present in the east Pacific. Convection anomalies associated with EWs vary strongly with changes in the background intraseasonal state. EWs during westerly and neutral intraseasonal periods are associated with robust convection anomalies. Easterly intraseasonal periods are, at times, associated with very weak EW convection anomalies because of weaker moisture and diluted CAPE variations.
Abstract
Processes associated with the local amplification of easterly waves (EWs) in the east Pacific warm pool are explored. Developing EWs favor convection in the southwest and northeast quadrants of the disturbance. In nascent EWs, convection favors the southwest quadrant. As the EW life cycle progresses, convection in the northeast quadrant becomes increasingly prominent and southwest quadrant convection wanes. The EW moisture budget reveals that anomalous meridional winds acting on the mean meridional moisture gradient of the ITCZ produce moisture anomalies supportive of convection in the southwest quadrant early in the EW life cycle. As EWs mature, moisture anomalies on the poleward side of the EW begin to grow and are supported by the advection of anomalous moisture by the mean zonal wind.
In the southwest and northeast portions of the wave, where convection anomalies are favored, lower-tropospheric vorticity is generated locally through vertical stretching that supports a horizontal tilt of the wave from the southwest to the northeast. EWs with such tilts are then able to draw energy via barotropic conversion from the background cyclonic zonal wind shear present in the east Pacific. Convection anomalies associated with EWs vary strongly with changes in the background intraseasonal state. EWs during westerly and neutral intraseasonal periods are associated with robust convection anomalies. Easterly intraseasonal periods are, at times, associated with very weak EW convection anomalies because of weaker moisture and diluted CAPE variations.
Abstract
Low-level barotropic dynamics may help to explain the modulation of eastern and western North Pacific tropical cyclones by the Madden–Julian oscillation (MJO) during Northern Hemisphere summer. The MJO is characterized by alternating periods of westerly and easterly 850-mb zonal wind anomalies across the tropical Pacific Ocean. When MJO 850-mb wind anomalies are westerly, small-scale, slow-moving eddies grow through barotropic eddy kinetic energy (EKE) conversion from the mean flow. These growing eddies, together with strong surface convergence, 850-mb cyclonic shear, and high mean sea surface temperatures, create a favorable environment for tropical cyclone formation. Periods of strong MJO easterlies over the Pacific are characterized by lesser EKE and negligible eddy growth by barotropic conversion.
The term −
Abstract
Low-level barotropic dynamics may help to explain the modulation of eastern and western North Pacific tropical cyclones by the Madden–Julian oscillation (MJO) during Northern Hemisphere summer. The MJO is characterized by alternating periods of westerly and easterly 850-mb zonal wind anomalies across the tropical Pacific Ocean. When MJO 850-mb wind anomalies are westerly, small-scale, slow-moving eddies grow through barotropic eddy kinetic energy (EKE) conversion from the mean flow. These growing eddies, together with strong surface convergence, 850-mb cyclonic shear, and high mean sea surface temperatures, create a favorable environment for tropical cyclone formation. Periods of strong MJO easterlies over the Pacific are characterized by lesser EKE and negligible eddy growth by barotropic conversion.
The term −