Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Eric Schulz x
  • Refine by Access: All Content x
Clear All Modify Search
Eric Werner Schulz

Abstract

Recent advances in a technique to identify and catalog waves that ride on larger-scale carrier waves are described in detail. The latest developments allow the riding wave removal technique to correctly identify and replace riding waves at the Nyquist frequency scale. Examples of the technique are provided for two diverse datasets: the Black Sea and Lake George. A sample of the riding wave characteristics extracted using this method is presented.

Full access
Eric W. Schulz, Jeffrey D. Kepert, and Diana J. M. Greenslade

Abstract

A method for routinely verifying numerical weather prediction surface marine winds with satellite scatterometer winds is introduced. The marine surface winds from the Australian Bureau of Meteorology’s operational global and regional numerical weather prediction systems are evaluated. The model marine surface layer is described. Marine surface winds from the global and limited-area models are compared with observations, both in situ (anemometer) and remote (scatterometer). A 2-yr verification shows that wind speeds from the regional model are typically underestimated by approximately 5%, with a greater bias in the meridional direction than the zonal direction. The global model also underestimates the surface winds by around 5%–10%. A case study of a significant marine storm shows that where larger errors occur, they are due to an underestimation of the storm intensity, rather than to biases in the boundary layer parameterizations.

Full access
Veronica Tamsitt, Ivana Cerovečki, Simon A. Josey, Sarah T. Gille, and Eric Schulz

Abstract

Wintertime surface ocean heat loss is the key process driving the formation of Subantarctic Mode Water (SAMW), but there are few direct observations of heat fluxes, particularly during winter. The Ocean Observatories Initiative (OOI) Southern Ocean mooring in the southeast Pacific Ocean and the Southern Ocean Flux Station (SOFS) in the southeast Indian Ocean provide the first concurrent, multiyear time series of air–sea fluxes in the Southern Ocean from two key SAMW formation regions. In this work we compare drivers of wintertime heat loss and SAMW formation by comparing air–sea fluxes and mixed layers at these two mooring locations. A gridded Argo product and the ERA5 reanalysis product provide temporal and spatial context for the mooring observations. Turbulent ocean heat loss is on average 1.5 times larger in the southeast Indian (SOFS) than in the southeast Pacific (OOI), with stronger extreme heat flux events in the southeast Indian leading to larger cumulative winter ocean heat loss. Turbulent heat loss events in the southeast Indian (SOFS) occur in two atmospheric regimes (cold air from the south or dry air circulating via the north), while heat loss events in the southeast Pacific (OOI) occur in a single atmospheric regime (cold air from the south). On interannual time scales, wintertime anomalies in net heat flux and mixed layer depth (MLD) are often correlated at the two sites, particularly when wintertime MLDs are anomalously deep. This relationship is part of a larger basin-scale zonal dipole in heat flux and MLD anomalies present in both the Indian and Pacific basins, associated with anomalous meridional atmospheric circulation.

Free access
Vidhi Bharti, Eric Schulz, Christopher W. Fairall, Byron W. Blomquist, Yi Huang, Alain Protat, Steven T. Siems, and Michael J. Manton

Abstract

Given the large uncertainties in surface heat fluxes over the Southern Ocean, an assessment of fluxes obtained by European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) product, the Australian Integrated Marine Observing System (IMOS) routine observations, and the Objectively Analyzed Air–Sea Heat Fluxes (OAFlux) project hybrid dataset is performed. The surface fluxes are calculated using the COARE 3.5 bulk algorithm with in situ data obtained from the NOAA Physical Sciences Division flux system during the Clouds, Aerosols, Precipitation, Radiation, and Atmospheric Composition over the Southern Ocean (CAPRICORN) experiment on board the R/V Investigator during a voyage (March–April 2016) in the Australian sector of the Southern Ocean (43°–53°S). ERA-Interim and OAFlux data are further compared with the Southern Ocean Flux Station (SOFS) air–sea flux moored surface float deployed for a year (March 2015–April 2016) at ~46.7°S, 142°E. The results indicate that ERA-Interim (3 hourly at 0.25°) and OAFlux (daily at 1°) estimate sensible heat flux H s accurately to within ±5 W m−2 and latent heat flux H l to within ±10 W m−2. ERA-Interim gives a positive bias in H s at low latitudes (<47°S) and in H l at high latitudes (>47°S), and OAFlux displays consistently positive bias in H l at all latitudes. No systematic bias with respect to wind or rain conditions was observed. Although some differences in the bulk flux algorithms are noted, these biases can be largely attributed to the uncertainties in the observations used to derive the flux products.

Full access
Roberto Buizza, Stefan Brönnimann, Leopold Haimberger, Patrick Laloyaux, Matthew J. Martin, Manuel Fuentes, Magdalena Alonso-Balmaseda, Andreas Becker, Michael Blaschek, Per Dahlgren, Eric de Boisseson, Dick Dee, Marie Doutriaux-Boucher, Xiangbo Feng, Viju O. John, Keith Haines, Sylvie Jourdain, Yuki Kosaka, Daniel Lea, Florian Lemarié, Michael Mayer, Palmira Messina, Coralie Perruche, Philippe Peylin, Jounie Pullainen, Nick Rayner, Elke Rustemeier, Dinand Schepers, Roger Saunders, Jörg Schulz, Alexander Sterin, Sebastian Stichelberger, Andrea Storto, Charles-Emmanuel Testut, Maria-Antóonia Valente, Arthur Vidard, Nicolas Vuichard, Anthony Weaver, James While, and Markus Ziese

Abstract

The European Reanalysis of Global Climate Observations 2 (ERA-CLIM2) is a European Union Seventh Framework Project started in January 2014 and due to be completed in December 2017. It aims to produce coupled reanalyses, which are physically consistent datasets describing the evolution of the global atmosphere, ocean, land surface, cryosphere, and the carbon cycle. ERA-CLIM2 has contributed to advancing the capacity for producing state-of-the-art climate reanalyses that extend back to the early twentieth century. ERA-CLIM2 has led to the generation of the first European ensemble of coupled ocean, sea ice, land, and atmosphere reanalyses of the twentieth century. The project has funded work to rescue and prepare observations and to advance the data-assimilation systems required to generate operational reanalyses, such as the ones planned by the European Union Copernicus Climate Change Service. This paper summarizes the main goals of the project, discusses some of its main areas of activities, and presents some of its key results.

Open access
Diana Greenslade, Mark Hemer, Alex Babanin, Ryan Lowe, Ian Turner, Hannah Power, Ian Young, Daniel Ierodiaconou, Greg Hibbert, Greg Williams, Saima Aijaz, João Albuquerque, Stewart Allen, Michael Banner, Paul Branson, Steve Buchan, Andrew Burton, John Bye, Nick Cartwright, Amin Chabchoub, Frank Colberg, Stephanie Contardo, Francois Dufois, Craig Earl-Spurr, David Farr, Ian Goodwin, Jim Gunson, Jeff Hansen, David Hanslow, Mitchell Harley, Yasha Hetzel, Ron Hoeke, Nicole Jones, Michael Kinsela, Qingxiang Liu, Oleg Makarynskyy, Hayden Marcollo, Said Mazaheri, Jason McConochie, Grant Millar, Tim Moltmann, Neal Moodie, Joao Morim, Russel Morison, Jana Orszaghova, Charitha Pattiaratchi, Andrew Pomeroy, Roger Proctor, David Provis, Ruth Reef, Dirk Rijnsdorp, Martin Rutherford, Eric Schulz, Jake Shayer, Kristen Splinter, Craig Steinberg, Darrell Strauss, Greg Stuart, Graham Symonds, Karina Tarbath, Daniel Taylor, James Taylor, Darshani Thotagamuwage, Alessandro Toffoli, Alireza Valizadeh, Jonathan van Hazel, Guilherme Vieira da Silva, Moritz Wandres, Colin Whittaker, David Williams, Gundula Winter, Jiangtao Xu, Aihong Zhong, and Stefan Zieger
Full access
Diana Greenslade, Mark Hemer, Alex Babanin, Ryan Lowe, Ian Turner, Hannah Power, Ian Young, Daniel Ierodiaconou, Greg Hibbert, Greg Williams, Saima Aijaz, João Albuquerque, Stewart Allen, Michael Banner, Paul Branson, Steve Buchan, Andrew Burton, John Bye, Nick Cartwright, Amin Chabchoub, Frank Colberg, Stephanie Contardo, Francois Dufois, Craig Earl-Spurr, David Farr, Ian Goodwin, Jim Gunson, Jeff Hansen, David Hanslow, Mitchell Harley, Yasha Hetzel, Ron Hoeke, Nicole Jones, Michael Kinsela, Qingxiang Liu, Oleg Makarynskyy, Hayden Marcollo, Said Mazaheri, Jason McConochie, Grant Millar, Tim Moltmann, Neal Moodie, Joao Morim, Russel Morison, Jana Orszaghova, Charitha Pattiaratchi, Andrew Pomeroy, Roger Proctor, David Provis, Ruth Reef, Dirk Rijnsdorp, Martin Rutherford, Eric Schulz, Jake Shayer, Kristen Splinter, Craig Steinberg, Darrell Strauss, Greg Stuart, Graham Symonds, Karina Tarbath, Daniel Taylor, James Taylor, Darshani Thotagamuwage, Alessandro Toffoli, Alireza Valizadeh, Jonathan van Hazel, Guilherme Vieira da Silva, Moritz Wandres, Colin Whittaker, David Williams, Gundula Winter, Jiangtao Xu, Aihong Zhong, and Stefan Zieger

Abstract

The Australian marine research, industry, and stakeholder community has recently undertaken an extensive collaborative process to identify the highest national priorities for wind-waves research. This was undertaken under the auspices of the Forum for Operational Oceanography Surface Waves Working Group. The main steps in the process were first, soliciting possible research questions from the community via an online survey; second, reviewing the questions at a face-to-face workshop; and third, online ranking of the research questions by individuals. This process resulted in 15 identified priorities, covering research activities and the development of infrastructure. The top five priorities are 1) enhanced and updated nearshore and coastal bathymetry; 2) improved understanding of extreme sea states; 3) maintain and enhance the in situ buoy network; 4) improved data access and sharing; and 5) ensemble and probabilistic wave modeling and forecasting. In this paper, each of the 15 priorities is discussed in detail, providing insight into why each priority is important, and the current state of the art, both nationally and internationally, where relevant. While this process has been driven by Australian needs, it is likely that the results will be relevant to other marine-focused nations.

Free access