Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Erik Behrens x
  • All content x
Clear All Modify Search
Caroline C. Ummenhofer, Franziska U. Schwarzkopf, Gary Meyers, Erik Behrens, Arne Biastoch, and Claus W. Böning

Abstract

Variations in eastern Indian Ocean upper-ocean thermal properties are assessed for the period 1970–2004, with a particular focus on asymmetric features related to opposite phases of Indian Ocean dipole events, using high-resolution ocean model hindcasts. Sensitivity experiments, where interannual atmospheric forcing variability is restricted to the Indian or Pacific Ocean only, support the interpretation of forcing mechanisms for large-scale asymmetric behavior in eastern Indian Ocean variability. Years are classified according to eastern Indian Ocean subsurface heat content (HC) as proxy of thermocline variations. Years characterized by an anomalous low HC feature a zonal gradient in upper-ocean properties near the equator, while high events have a meridional gradient from the tropics into the subtropics. The spatial and temporal characteristics of the seasonal evolution of HC anomalies for the two cases is distinct, as is the relative contribution from Indian Ocean atmospheric forcing versus remote influences from Pacific wind forcing: low events develop rapidly during austral winter/spring in response to Indian Ocean wind forcing associated with an enhanced southeasterly monsoon driving coastal upwelling and a shoaling thermocline in the east; in contrast, formation of an anomalous high eastern Indian Ocean HC is more gradual, with anomalies earlier in the year expanding from the Indonesian Throughflow (ITF) region, initiated by remote Pacific wind forcing, and transmitted through the ITF via coastal wave dynamics. Implications for seasonal predictions arise with high HC events offering extended lead times for predicting thermocline variations and upper-ocean properties across the eastern Indian Ocean.

Full access
Florian Rauser, Mohammad Alqadi, Steve Arowolo, Noël Baker, Joel Bedard, Erik Behrens, Nilay Dogulu, Lucas Gatti Domingues, Ariane Frassoni, Julia Keller, Sarah Kirkpatrick, Gaby Langendijk, Masoumeh Mirsafa, Salauddin Mohammad, Ann Kristin Naumann, Marisol Osman, Kevin Reed, Marion Rothmüller, Vera Schemann, Awnesh Singh, Sebastian Sonntag, Fiona Tummon, Dike Victor, Marcelino Q. Villafuerte, Jakub P. Walawender, and Modathir Zaroug

Abstract

The exigencies of the global community toward Earth system science will increase in the future as the human population, economies, and the human footprint on the planet continue to grow. This growth, combined with intensifying urbanization, will inevitably exert increasing pressure on all ecosystem services. A unified interdisciplinary approach to Earth system science is required that can address this challenge, integrate technical demands and long-term visions, and reconcile user demands with scientific feasibility. Together with the research arms of the World Meteorological Organization, the Young Earth System Scientists community has gathered early-career scientists from around the world to initiate a discussion about frontiers of Earth system science. To provide optimal information for society, Earth system science has to provide a comprehensive understanding of the physical processes that drive the Earth system and anthropogenic influences. This understanding will be reflected in seamless prediction systems for environmental processes that are robust and instructive to local users on all scales. Such prediction systems require improved physical process understanding, more high-resolution global observations, and advanced modeling capability, as well as high-performance computing on unprecedented scales. At the same time, the robustness and usability of such prediction systems also depend on deepening our understanding of the entire Earth system and improved communication between end users and researchers. Earth system science is the fundamental baseline for understanding the Earth’s capacity to accommodate humanity, and it provides a means to have a rational discussion about the consequences and limits of anthropogenic influence on Earth. Without its progress, truly sustainable development will be impossible.

Full access