Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Ernani L. Nascimento x
  • All content x
Clear All Modify Search
Maurício I. Oliveira, Ernani L. Nascimento, and Carolina Kannenberg


Criteria currently employed in algorithms that identify low-level jets (LLJs) in South America utilizing rawinsonde and gridded model data fail to detect an important number of LLJ events. This study discusses shortcomings in the existing approaches for LLJ identification in South America and proposes modifications to the criteria regarding layer depth for LLJ identification and wind direction. Episodes of southerly LLJs, which have received less attention in the La Plata basin, are also included in the investigation. A sensitivity analysis of LLJ detection in South America upon the choice of the criteria applied to a sample period of 15 years (1996–2010) of gridded numerical data from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR), and to a 20-yr dataset (1996–2015) of actual rawinsondes for the La Plata basin, reveals the benefits of revising the criteria. The modified criteria allow for the characterization of a wider spectrum of LLJs over key regions of South America, such as over the Bolivian–Paraguayan border, Sierras de Córdoba in Argentina, and southern-southeastern Brazil. This wider range of events includes elevated LLJs, mostly with strong zonal components, that account for approximately 20% of the full sample of LLJs identified in the rawinsonde dataset investigated here. The revised criteria have the advantage of retaining the identification of episodes that meet the consecrated definition of the South American LLJ, while at the same time providing an augmented sample of such wind systems. Our results provide further insights into the forcing mechanisms of distinct types of LLJs in South America, ranging from topographic to baroclinic effects.

Full access
Harold E. Brooks, Charles A. Doswell III, Xiaoling Zhang, A. M. Alexander Chernokulsky, Eigo Tochimoto, Barry Hanstrum, Ernani de Lima Nascimento, David M. L. Sills, Bogdan Antonescu, and Brad Barrett


The history of severe thunderstorm research and forecasting over the past century has been a remarkable story involving interactions between technological development of observational and modeling capabilities, research into physical processes, and the forecasting of phenomena with the goal of reducing loss of life and property. Perhaps more so than any other field of meteorology, the relationship between researchers and forecasters has been particularly close in the severe thunderstorm domain, with both groups depending on improved observational capabilities.

The advances that have been made have depended on observing systems that did not exist 100 years ago, particularly radar and upper-air systems. They have allowed scientists to observe storm behavior and structure and the environmental setting in which storms occur. This has led to improved understanding of processes, which in turn has allowed forecasters to use those same observational systems to improve forecasts. Because of the relatively rare and small-scale nature of many severe thunderstorm events, severe thunderstorm researchers have developed mobile instrumentation capabilities that have allowed them to collect high-quality observations in the vicinity of storms.

Since much of the world is subject to severe thunderstorm hazards, research has taken place around the world, with the local emphasis dependent on what threats are perceived in that area, subject to the availability of resources to study the threat. Frequently, the topics of interest depend upon a single event, or a small number of events, of a particular kind that aroused public or economic interests in that area. International cooperation has been an important contributor to collecting and disseminating knowledge.

As the AMS turns 100, the range of research relating to severe thunderstorms is expanding. The time scale of forecasting or projecting is increasing, with work going on to study forecasts on the seasonal to subseasonal time scales, as well as addressing how climate change may influence severe thunderstorms. With its roots in studying weather that impacts the public, severe thunderstorm research now includes significant work from the social science community, some as standalone research and some in active collaborative efforts with physical scientists.

In addition, the traditional emphases of the field continue to grow. Improved radar and numerical modeling capabilities allow meteorologists to see and model details that were unobservable and not understood a half century ago. The long tradition of collecting observations in the field has led to improved quality and quantity of observations, as well as the capability to collect them in locations that were previously inaccessible. Much of that work has been driven by the gaps in understanding identified by theoretical and operational practice.

Full access
Luiz A. T. Machado, Maria A. F. Silva Dias, Carlos Morales, Gilberto Fisch, Daniel Vila, Rachel Albrecht, Steven J. Goodman, Alan J. P. Calheiros, Thiago Biscaro, Christian Kummerow, Julia Cohen, David Fitzjarrald, Ernani L. Nascimento, Meiry S. Sakamoto, Christopher Cunningham, Jean-Pierre Chaboureau, Walter A. Petersen, David K. Adams, Luca Baldini, Carlos F. Angelis, Luiz F. Sapucci, Paola Salio, Henrique M. J. Barbosa, Eduardo Landulfo, Rodrigo A. F. Souza, Richard J. Blakeslee, Jeffrey Bailey, Saulo Freitas, Wagner F. A. Lima, and Ali Tokay

CHUVA, meaning “rain” in Portuguese, is the acronym for the Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud-Resolving Modeling and to the Global Precipitation Measurement (GPM). The CHUVA project has conducted five field campaigns; the sixth and last campaign will be held in Manaus in 2014. The primary scientific objective of CHUVA is to contribute to the understanding of cloud processes, which represent one of the least understood components of the weather and climate system. The five CHUVA campaigns were designed to investigate specific tropical weather regimes. The first two experiments, in Alcantara and Fortaleza in northeastern Brazil, focused on warm clouds. The third campaign, which was conducted in Belém, was dedicated to tropical squall lines that often form along the sea-breeze front. The fourth campaign was in the Vale do Paraiba of southeastern Brazil, which is a region with intense lightning activity. In addition to contributing to the understanding of cloud process evolution from storms to thunderstorms, this fourth campaign also provided a high-fidelity total lightning proxy dataset for the NOAA Geostationary Operational Environmental Satellite (GOES)-R program. The fifth campaign was carried out in Santa Maria, in southern Brazil, a region of intense hailstorms associated with frequent mesoscale convective complexes. This campaign employed a multimodel high-resolution ensemble experiment. The data collected from contrasting precipitation regimes in tropical continental regions allow the various cloud processes in diverse environments to be compared. Some examples of these previous experiments are presented to illustrate the variability of convection across the tropics.

Full access
Stephen W. Nesbitt, Paola V. Salio, Eldo Ávila, Phillip Bitzer, Lawrence Carey, V. Chandrasekar, Wiebke Deierling, Francina Dominguez, Maria Eugenia Dillon, C. Marcelo Garcia, David Gochis, Steven Goodman, Deanna A. Hence, Karen A. Kosiba, Matthew R. Kumjian, Timothy Lang, Lorena Medina Luna, James Marquis, Robert Marshall, Lynn A. McMurdie, Ernani Lima Nascimento, Kristen L. Rasmussen, Rita Roberts, Angela K. Rowe, Juan José Ruiz, Eliah F.M.T. São Sabbas, A. Celeste Saulo, Russ S. Schumacher, Yanina Garcia Skabar, Luiz Augusto Toledo Machado, Robert J. Trapp, Adam Varble, James Wilson, Joshua Wurman, Edward J. Zipser, Ivan Arias, Hernán Bechis, and Maxwell A. Grover


This article provides an overview of the experimental design, execution, education and public outreach, data collection, and initial scientific results from the Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. RELAMPAGO was a major field campaign conducted in Córdoba and Mendoza provinces in Argentina, and western Rio Grande do Sul State in Brazil in 2018-2019 that involved more than 200 scientists and students from the US, Argentina, and Brazil. This campaign was motivated by the physical processes and societal impacts of deep convection that frequently initiates in this region, often along the complex terrain of the Sierras de Córdoba and Andes, and often grows rapidly upscale into dangerous storms that impact society. Observed storms during the experiment produced copious hail, intense flash flooding, extreme lightning flash rates and other unusual lightning phenomena, but few tornadoes. The 5 distinct scientific foci of RELAMPAGO: convection initiation, severe weather, upscale growth, hydrometeorology, and lightning and electrification are described, as are the deployment strategies to observe physical processes relevant to these foci. The campaign’s international cooperation, forecasting efforts, and mission planning strategies enabled a successful data collection effort. In addition, the legacy of RELAMPAGO in South America, including extensive multi-national education, public outreach, and social media data-gathering associated with the campaign, is summarized.

Full access