Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Evan Weller x
  • Refine by Access: All Content x
Clear All Modify Search
Evan Weller and Wenju Cai

Abstract

An assessment of how well climate models simulate the Indian Ocean dipole (IOD) is undertaken using 20 coupled models that have partaken in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Compared with models in phase 3 (CMIP3), no substantial improvement is evident in the simulation of the IOD pattern and/or amplitude during austral spring [September–November (SON)]. The majority of models in CMIP5 generate a larger variance of sea surface temperature (SST) in the Sumatra–Java upwelling region and an IOD amplitude that is far greater than is observed. Although the relationship between precipitation and tropical Indian Ocean SSTs is well simulated, future projections of SON rainfall changes over IOD-influenced regions are intrinsically linked to the IOD amplitude and its rainfall teleconnection in the model present-day climate. The diversity of the simulated IOD amplitudes in models in CMIP5 (and CMIP3), which tend to be overly large, results in a wide range of future modeled SON rainfall trends over IOD-influenced regions. The results herein highlight the importance of realistically simulating the present-day IOD properties and suggest that caution should be exercised in interpreting climate projections in the IOD-affected regions.

Full access
Evan Weller and Wenju Cai

Abstract

Recent studies have shown that the impact of the Indian Ocean dipole (IOD) on southern Australia occurs via equivalent barotropic Rossby wave trains triggered by convective heating in the tropical Indian Ocean. Furthermore, the El Niño–Southern Oscillation (ENSO) influence on southern Australian climate is exerted through the same pathway during austral spring. It is also noted that positive phase [positive IOD (pIOD) and El Niño] events have a much larger impact associated with their respective skewness. These phenomena play a significant role in the region's rainfall reduction in recent decades, and it is essential that climate models used for future projections simulate these features. Here, the authors demonstrate that climate models do indeed simulate a greater climatic impact on Australia for pIOD events than for negative IOD (nIOD) events, but this asymmetric impact is distorted by an exaggerated influence of La Niña emanating from the Pacific. The distortion results from biases in the Pacific in two respects. First, the tropical and extratropical response to La Niña is situated unrealistically too far westward and hence too close to Australia, leading to an overly strong impact on southeast Australia that shows up through the nIOD–La Niña coherence. Second, the majority of models simulate a positive sea surface temperature skewness in the eastern Pacific that is too weak, overestimating the impact of La Niña relative to that of El Niño. As such, the impact of the positive asymmetry in the IOD only becomes apparent when the impact of ENSO is removed. This model bias needs to be taken into account when analyzing projections of regional Australian climate change.

Full access
Evan Weller, Manuel Nunez, Gary Meyers, and Itsara Masiri

Abstract

A regional-scale estimate of the surface heat budget of the Great Barrier Reef and Coral Sea (10°–26°S, 142°–155°E) has been developed for the period 1995–2005 in the hope of understanding the trends of sea surface temperatures and the surface heat balance. This report describes the methodology to acquire input parameters from satellite observations, the resultant individual components of the surface heat budget, and their validation with existing datasets and surface measurements.

The accuracy of individual flux components of the heat budget were analyzed with an array of surface measurements. Derived monthly averaged latent and sensible heat flux estimates show RMS errors of approximately 25.2 and 3.4 W m−2, respectively. Monthly averaged longwave and shortwave radiation flux estimates show RMS errors of approximately 6.7 and 13.3 W m−2, respectively. These improved estimates allow a higher confidence in studies that examine recent sea surface temperature (SST) trends and observed mass coral bleaching for the region.

It is proposed that the greatest uptake of heat occurs over the spring/summer period in the central and southern regions of the Great Barrier Reef, agreeing well with areas where anomalously high sea surface temperatures are observed and where the most significant coral bleaching has occurred, and not in the most northern, more tropical region, as might be expected. The surface heat budget climatology was used to examine the mass bleaching episode that occurred in 2002. Results show that areas of maximum and minimum bleaching are better discriminated by the anomaly from mean seasonal values in the net surface heat flux (Q NET), with accuracy of 86% and 79%, respectively, than by absolute Q NET, absolute SST, or SST anomaly. Possible reasons for this are discussed.

Full access
Evan Weller, Kay Shelton, Michael J. Reeder, and Christian Jakob

Abstract

Precipitation is often organized along coherent lines of low-level convergence, which at longer time and space scales form well-known convergence zones over the world’s oceans. Here, an automated, objective method is used to identify instantaneous low-level convergence lines in reanalysis data and calculate their frequency for the period 1979–2013. Identified convergence lines are combined with precipitation observations to assess the extent to which precipitation around the globe is associated with convergence lines in the lower troposphere. It is shown that a large percentage of precipitation (between 65% and 90%) over the tropical oceans is associated with such convergence lines, with large regional variations of up to 30% throughout the year, especially in the eastern Pacific and Atlantic Oceans. Over land, the annual-mean proportion of precipitation associated with convergence lines ranges between 30% and 60%, and the lowest proportions (less than 15%) associated with convergence lines occur on the eastern flank of the subtropical highs. Overall, much greater precipitation is associated with long coherent lines (greater than 300 km in length) than with shorter fragmented lines (less than 300 km), and the majority of precipitation associated with shorter lines occurs over land. The proportion of precipitation not associated with any convergence line primarily occurs where both precipitation and frequency of convergence lines are low. The high temporal and spatial resolution of the climatology constructed also enables an examination of the diurnal cycle in the relationship between convergence lines and precipitation. Here an example is provided over the tropical Maritime Continent region.

Full access
Evan Weller, Bo-Joung Park, and Seung-Ki Min

Abstract

This study provides the first quantitative assessment of observed long-term changes in summer-season timing and length in the Southern Hemisphere (SH) and its subregions over the past 60 years, enabling a global completeness by complementing such characteristics previously reported for the Northern Hemisphere (NH). Using an objective algorithm that is based on temperature indices, relative measures of summer onset, withdrawal, and duration are determined at each land location over the period 1953–2012. Significant widespread summer-season lengthening, due to earlier onset and delayed withdrawal, has occurred across the SH, a longer period for extreme heat-wave events and wildfires to potentially occur. The asymmetric magnitude (onset vs withdrawal) in summer-season lengthening is slightly less over the SH than over the NH. Contributions of anthropogenic and natural factors to the observed trends in summer-season characteristics were investigated using phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel simulations integrated with observed external forcings [anthropogenic plus natural (ALL)], greenhouse gas forcing only (GHG), and natural forcing only [solar and volcanic activities (NAT)]. Overall, consistent with the NH, increased greenhouse gases were the main cause of observed changes in the SH, with negligible contribution from other external forcings. ALL and GHG simulations also reproduced a slight tendency for earlier summer onset to contribute more to summer lengthening. Proportions of observed regional trends in summer-season indices attributable to trends in long-term internal variability in the SH, namely, the interdecadal Pacific oscillation (IPO) and southern annular mode (SAM), suggests such variability can only explain up to ~12%, supporting the dominant role of greenhouse gas forcing.

Free access
Prashant Kumar, Seung-Ki Min, Evan Weller, Hansu Lee, and Xiaolan L. Wang

Abstract

Extreme ocean surface wave heights significantly affect coastal structures and offshore activities and impact many vulnerable populations of low-lying islands. Therefore, better understanding of ocean wave height variability plays an important role in potentially reducing risk in such regions. In this study, global impacts of natural climate variability such as El Niño–Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and Pacific decadal oscillation (PDO) on extreme significant wave height (SWH) are analyzed using ERA-Interim (1980–2014) and ECMWF twentieth-century reanalysis (ERA-20C; 1952–2010) datasets for December–February (DJF). The nonstationary generalized extreme value (GEV) analysis is used to determine the influence of natural climate variability on DJF maxima of SWH (Hmax), wind speed (Wmax), and mean sea level pressure gradient amplitude (Gmax). The major ENSO influence on Hmax is found over the northeastern North Pacific (NP), with increases during El Niño and decreases during La Niña, and its counter responses are observed in coastal regions of the western NP, which are consistently observed in both Wmax and Gmax responses. The Hmax response to the PDO occurs over similar regions in the NP as those associated with ENSO but with much weaker amplitude. Composite analysis of different ENSO and PDO phase combinations reveals stronger (weaker) influences when both variability modes are of the same (opposite) phase. Furthermore, significant NAO influence on Hmax, Wmax, and Gmax is observed throughout Icelandic and Azores regions in relation to changes in atmospheric circulation patterns. Overall, the response of extreme SWH to natural climate variability modes is consistent with seasonal mean responses.

Full access
Evan Weller, Seung-Ki Min, Donghyun Lee, Jong-Seong Kug, Wenju Cai, and Sang-Wook Yeh
Full access
Evan Weller, Ming Feng, Harry Hendon, Jian Ma, Shang-Ping Xie, and Nick Caputi

Abstract

Off the Western Australia coast, interannual variations of wind regime during the austral winter and spring are significantly correlated with the Indian Ocean dipole (IOD) and the southern annular mode (SAM) variability. Atmospheric general circulation model experiments forced by an idealized IOD sea surface temperature anomaly field suggest that the IOD-generated deep atmospheric convection anomalies trigger a Rossby wave train in the upper troposphere that propagates into the southern extratropics and induces positive geopotential height anomalies over southern Australia, independent of the SAM. The positive geopotential height anomalies extended from the upper troposphere to the surface, south of the Australian continent, resulting in easterly wind anomalies off the Western Australia coast and a reduction of the high-frequency synoptic storm events that deliver the majority of southwest Australia rainfall during austral winter and spring. In the marine environment, the wind anomalies and reduction of storm events may hamper the western rock lobster recruitment process.

Full access
Wenju Cai, Ariaan Purich, Tim Cowan, Peter van Rensch, and Evan Weller

Abstract

The Australian decade-long “Millennium Drought” broke in the summer of 2010/11 and was considered the most severe drought since instrumental records began in the 1900s. A crucial question is whether climate change played a role in inducing the rainfall deficit. The climate modes in question include the Indian Ocean dipole (IOD), affecting southern Australia in winter and spring; the southern annular mode (SAM) with an opposing influence on southern Australia in winter to that in spring; and El Niño–Southern Oscillation, affecting northern and eastern Australia in most seasons and southeastern Australia in spring through its coherence with the IOD. Furthermore, the poleward edge of the Southern Hemisphere Hadley cell, which indicates the position of the subtropical dry zone, has possible implications for recent rainfall declines in autumn. Using observations and simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), it is shown that the drought over southwest Western Australia is partly attributable to a long-term upward SAM trend, which contributed to half of the winter rainfall reduction in this region. For southeast Australia, models simulate weak trends in the pertinent climate modes. In particular, they severely underestimate the observed poleward expansion of the subtropical dry zone and associated impacts. Thus, although climate models generally suggest that Australia’s Millennium Drought was mostly due to multidecadal variability, some late-twentieth-century changes in climate modes that influence regional rainfall are partially attributable to anthropogenic greenhouse warming.

Full access