Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: F. Hugo Lambert x
  • All content x
Clear All Modify Search
F. Hugo Lambert and Myles R. Allen

Abstract

A tropospheric energy budget argument is used to analyze twentieth-century precipitation changes. It is found that global and ocean-mean general circulation model (GCM) precipitation changes can be understood as being due to the competing direct and surface-temperature-dependent effects of external climate forcings. In agreement with previous work, precipitation is found to respond more strongly to anthropogenic and volcanic sulfate aerosol and solar forcing than to greenhouse gas and black carbon aerosol forcing per unit temperature. This is due to the significant direct effects of greenhouse gas and black carbon forcing. Given that the relative importance of different forcings may change in the twenty-first century, the ratio of global precipitation change to global temperature change may be quite different. Differences in GCM twentieth- and twenty-first-century values are tractable via the energy budget framework in some, but not all, models. Changes in land-mean precipitation, on the other hand, cannot be understood at all with the method used here, even if land–ocean heat transfer is considered. In conclusion, the tropospheric energy budget is a useful concept for understanding the precipitation response to different forcings but it does not fully explain precipitation changes even in the global mean.

Full access
F. Hugo Lambert, Mark J. Webb, and Manoj M. Joshi

Abstract

Previous work has demonstrated that observed and modeled climates show a near-time-invariant ratio of mean land to mean ocean surface temperature change under transient and equilibrium global warming. This study confirms this in a range of atmospheric models coupled to perturbed sea surface temperatures (SSTs), slab (thermodynamics only) oceans, and a fully coupled ocean. Away from equilibrium, it is found that the atmospheric processes that maintain the ratio cause a land-to-ocean heat transport anomaly that can be approximated using a two-box energy balance model. When climate is forced by increasing atmospheric CO2 concentration, the heat transport anomaly moves heat from land to ocean, constraining the land to warm in step with the ocean surface, despite the small heat capacity of the land. The heat transport anomaly is strongly related to the top-of-atmosphere radiative flux imbalance, and hence it tends to a small value as equilibrium is approached. In contrast, when climate is forced by prescribing changes in SSTs, the heat transport anomaly replaces “missing” radiative forcing over land by moving heat from ocean to land, warming the land surface. The heat transport anomaly remains substantial in steady state. These results are consistent with earlier studies that found that both land and ocean surface temperature changes may be approximated as local responses to global mean radiative forcing. The modeled heat transport anomaly has large impacts on surface heat fluxes but small impacts on precipitation, circulation, and cloud radiative forcing compared with the impacts of surface temperature change. No substantial nonlinearities are found in these atmospheric variables when the effects of forcing and surface temperature change are added.

Full access
Alexander Todd, Matthew Collins, F. Hugo Lambert, and Robin Chadwick

Abstract

Large uncertainty remains in future projections of tropical precipitation change under global warming. A simplified method for diagnosing tropical precipitation change is tested here on present-day El Niño–Southern Oscillation (ENSO) precipitation shifts. This method, based on the weak temperature gradient approximation, assumes precipitation is associated with local surface relative humidity (RH) and surface air temperature (SAT), relative to the tropical mean. Observed and simulated changes in RH and SAT are subsequently used to diagnose changes in precipitation. Present-day ENSO precipitation shifts are successfully diagnosed using observations (correlation r = 0.69) and an ensemble of atmosphere-only (0.51 ≤ r ≤ 0.8) and coupled (0.5 ≤ r ≤ 0.87) climate model simulations. RH (r = 0.56) is much more influential than SAT (r = 0.27) in determining ENSO precipitation shifts for observations and climate model simulations over both land and ocean. Using intermodel differences, a significant relationship is demonstrated between method performance over ocean for present-day ENSO and projected global warming (r = 0.68). As a caveat, the authors note that mechanisms leading to ENSO-related precipitation changes are not a direct analog for global warming–related precipitation changes. The diagnosis method presented here demonstrates plausible mechanisms that relate changes in precipitation, RH, and SAT under different climate perturbations. Therefore, uncertainty in future tropical precipitation changes may be linked with uncertainty in future RH and SAT changes.

Full access
Ruth Geen, F. Hugo Lambert, and Geoffrey K. Vallis

Abstract

Aquaplanets with low-heat-capacity slab-ocean boundary conditions can exhibit rapid changes in the regime of the overturning circulation over the seasonal cycle, which have been connected to the onset of Earth’s monsoons. In spring, as the ITCZ migrates off the equator, it jumps poleward and a sudden transition occurs from an eddy-driven, equinoctial regime with two weak Hadley cells, to a near-angular-momentum-conserving, solstitial regime with a strong, cross-equatorial winter-hemisphere cell. Here, the controls on the transition latitude and rate are explored in idealized moist aquaplanet simulations. It is found that the transition remains rapid relative to the solar forcing when year length and slab-ocean heat capacity are varied, and, at Earth’s rotation rate, always occurs when the ITCZ reaches approximately 7°. This transition latitude is, however, found to scale inversely with rotation rate. Interestingly, the transition rate varies nonmonotonically with rotation, with a maximum at Earth’s rotation rate, suggesting that Earth may be particularly disposed to a fast monsoon onset. The fast transition relates to feedbacks in both the atmosphere and the slab ocean. In particular, an evaporative feedback between the lower-level branch of the overturning circulation and the surface temperature is identified. This accelerates monsoon onset and slows withdrawal. Last, comparing eddy-permitting and axisymmetric experiments shows that, in contrast with results from dry models, in this fully moist model the presence of eddies slows the migration of the ITCZ between hemispheres.

Full access
F. Hugo Lambert, Angus J. Ferraro, and Robin Chadwick

Abstract

A compositing scheme that predicts changes in tropical precipitation under climate change from changes in near-surface relative humidity (RH) and temperature is presented. As shown by earlier work, regions of high tropical precipitation in general circulation models (GCMs) are associated with high near-surface RH and temperature. Under climate change, it is found that high precipitation continues to be associated with the highest surface RH and temperatures in most CMIP5 GCMs, meaning that it is the “rank” of a given GCM grid box with respect to others that determines how much precipitation falls rather than the absolute value of surface temperature or RH change, consistent with the weak temperature gradient approximation. Further, it is demonstrated that the majority of CMIP5 GCMs are close to a threshold near which reductions in land RH produce large reductions in the RH ranking of some land regions, causing reductions in precipitation over land, particularly South America, and compensating increases over ocean. Recent work on predicting future changes in specific humidity allows the prediction of the qualitative sense of precipitation change in some GCMs when land surface humidity changes are unknown. However, the magnitudes of predicted changes are too small. Further study, perhaps into the role of radiative and land–atmosphere feedbacks, is necessary.

Full access
Masakazu Yoshimori, F. Hugo Lambert, Mark J. Webb, and Timothy Andrews

Abstract

The fixed anvil temperature (FAT) theory describes a mechanism for how tropical anvil clouds respond to global warming and has been used to argue for a robust positive longwave cloud feedback. A constant cloud anvil temperature, due to increased anvil altitude, has been argued to lead to a “zero cloud emission change” feedback, which can be considered positive relative to the negative feedback associated with cloud anvil warming when cloud altitude is unchanged. Here, partial radiative perturbation (PRP) analysis is used to quantify the radiative feedback caused by clouds that follow the FAT theory (FAT–cloud feedback) and to set this in the context of other feedback components in two atmospheric general circulation models. The FAT–cloud feedback is positive in the PRP framework due to increasing anvil altitude, but because the cloud emission does not change, this positive feedback is cancelled by an equal and opposite component of the temperature feedback due to increasing emission from the cloud. To incorporate this cancellation, the thermal radiative damping with fixed relative humidity and anvil temperature (T-FRAT) decomposition framework is proposed for longwave feedbacks, in which temperature, fixed relative humidity, and FAT–cloud feedbacks are combined. In T-FRAT, the cloud feedback under the FAT constraint is zero, while that under the proportionately higher anvil temperature (PHAT) constraint is negative. The change in the observable cloud radiative effect with FAT–cloud response is also evaluated and shown to be negative due to so-called cloud masking effects. It is shown that “cloud masking” is a misleading term in this context, and these effects are interpreted more generally as “cloud climatology effects.”

Open access
Mark J. Webb, Adrian P. Lock, and F. Hugo Lambert

Abstract

Low-level cloud feedbacks vary in magnitude but are positive in most climate models, due to reductions in low-level cloud fraction. This study explores the impact of surface evaporation on low-level cloud fraction feedback by performing climate change experiments with the aquaplanet configuration of the HadGEM2-A climate model, forcing surface evaporation to increase at different rates in two ways. Forcing the evaporation diagnosed in the surface scheme to increase at 7% K−1 with warming (more than doubling the hydrological sensitivity) results in an increase in global mean low-level cloud fraction and a negative global cloud feedback, reversing the signs of these responses compared to the standard experiments. The estimated inversion strength (EIS) increases more rapidly in these surface evaporation forced experiments, which is attributed to additional latent heat release and enhanced warming of the free troposphere. Stimulating a 7% K−1 increase in surface evaporation via enhanced atmospheric radiative cooling, however, results in a weaker EIS increase compared to the standard experiments and a slightly stronger low-level cloud reduction. The low-level cloud fraction response is predicted better by EIS than surface evaporation across all experiments. This suggests that surface-forced increases in evaporation increase low-level cloud fraction mainly by increasing EIS. Additionally, the results herein show that increases in surface evaporation can have a very substantial impact on the rate of increase in radiative cooling with warming, by modifying the temperature and humidity structure of the atmosphere. This has implications for understanding the factors controlling hydrological sensitivity.

Full access
Marion Saint-Lu, Robin Chadwick, F. Hugo Lambert, Matthew Collins, Ian Boutle, Michael Whitall, and Chimene Daleu

Abstract

By comparing a single-column model (SCM) with closely related general circulation models (GCMs), precipitation changes that can be diagnosed from local changes in surface temperature (T S) and relative humidity (RHS) are separated from more complex responses. In the SCM setup, the large-scale tropical circulation is parameterized to respond to the surface temperature departure from a prescribed environment, following the weak temperature gradient (WTG) approximation and using the damped gravity wave (DGW) parameterization. The SCM is also forced with moisture variations. First, it is found that most of the present-day mean tropical rainfall and circulation pattern is associated with T S and RHS patterns. Climate change experiments with the SCM are performed, imposing separately surface warming and CO2 increase. The rainfall responses to future changes in sea surface temperature patterns and plant physiology are successfully reproduced, suggesting that these are direct responses to local changes in convective instability. However, the SCM increases oceanic rainfall too much, and fails to reproduce the land rainfall decrease, both of which are associated with uniform ocean warming. It is argued that remote atmospheric teleconnections play a crucial role in both weakening the atmospheric overturning circulation and constraining precipitation changes. Results suggest that the overturning circulation weakens, both as a direct local response to increased CO2 and in response to energy-imbalance driven exchanges between ascent and descent regions.

Restricted access
Joe M. Osborne, F. Hugo Lambert, Margriet Groenendijk, Anna B. Harper, Charles D. Koven, Benjamin Poulter, Thomas A. M. Pugh, Stephen Sitch, Benjamin D. Stocker, Andy Wiltshire, and Sönke Zaehle

Abstract

Century-long observed gridded land precipitation datasets are a cornerstone of hydrometeorological research. But recent work has suggested that observed Northern Hemisphere midlatitude (NHML) land mean precipitation does not show evidence of an expected negative response to mid-twentieth-century aerosol forcing. Utilizing observed river discharges, the observed runoff is calculated and compared with observed land precipitation. The results show a near-zero twentieth-century trend in observed NHML land mean runoff, in contrast to the significant positive trend in observed NHML land mean precipitation. However, precipitation and runoff share common interannual and decadal variability. An obvious split, or breakpoint, is found in the NHML land mean runoff–precipitation relationship in the 1930s. Using runoff simulated by six land surface models (LSMs), which are driven by the observed precipitation dataset, such breakpoints are absent. These findings support previous hypotheses that inhomogeneities exist in the early-twentieth-century NHML land mean precipitation record. Adjusting the observed precipitation record according to the observed runoff record largely accounts for the departure of the observed precipitation response from that predicted given the real-world aerosol forcing estimate, more than halving the discrepancy from about 6 to around 2 W m−2. Consideration of complementary observed runoff adds support to the suggestion that NHML-wide early-twentieth-century precipitation observations are unsuitable for climate change studies. The agreement between precipitation and runoff over Europe, however, is excellent, supporting the use of whole-twentieth-century observed precipitation datasets here.

Full access