Search Results

You are looking at 1 - 10 of 82 items for

  • Author or Editor: F. Li x
  • Refine by Access: All Content x
Clear All Modify Search
Tianming Li
and
Timothy F. Hogan

Abstract

The role of the annual-mean climate on seasonal and interannual variability in the tropical Pacific is investigated by means of a coupled atmosphere–ocean general circulation model. The atmospheric component of this coupled model is the Naval Operational Global Atmospheric Prediction System and the oceanic component is the Geophysical Fluid Dynamics Laboratory Modular Ocean Model. Three sets of experiments are conducted. In case A, no annual-mean flux adjustment is applied so that the coupled model generates its own time-mean state. In case B, an annual-mean flux adjustment for SST is applied. In case C, both the annual-mean SST and surface wind are adjusted. It is found that a realistic simulation of both the seasonal and interannual variations can be achieved when a realistic annual-mean state is presented. The long-term (40 yr) simulations of the coupled GCM demonstrate the importance of the annual-mean climate on seasonal and interannual variability in the Tropics. The mechanism that causes an annual rather than a semiannual cycle at the equator is discussed. The authors particularly notice that the interannual oscillations in the model capture essentially all three ENSO phase transition modes: the delayed oscillator mode, the slow SST mode, and the stationary SST mode.

Full access
F. Li
,
A. M. Vogelmann
, and
V. Ramanathan

Abstract

This study uses data collected from the Clouds and the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments to determine Saharan dust broadband shortwave aerosol radiative forcing over the Atlantic Ocean near the African coast (15°–25°N, 45°–15°W). The clear-sky aerosol forcing is derived directly from these data, without requiring detailed information about the aerosol properties that are not routinely observed such as chemical composition, microphysical properties, and their height variations. To determine the diurnally averaged Saharan dust radiative forcing efficiency (i.e., broadband shortwave forcing per unit optical depth at 550 nm, W m−2 τ −1 a ), two extreme seasons are juxtaposed: the high-dust months [June–August (JJA)] and the low-dust months [November–January (NDJ)]. It is found that the top-of-atmosphere (TOA) diurnal mean forcing efficiency is −35 ± 3 W m−2 τ −1 a for JJA, and −26 ± 3 W m−2 τ −1 a for NDJ. These efficiencies can be fit by reducing the spectrally varying aerosol single-scattering albedo such that its value at 550 nm is reduced from 0.95 ± 0.04 for JJA to about 0.86 ± 0.04 for NDJ. The lower value for the low-dust months might be influenced by biomass-burning aerosols that were transported into the study region from equatorial Africa. Although the high-dust season has a greater (absolute value of the) TOA forcing efficiency, the low-dust season may have a greater surface forcing efficiency. Extrapolations based on model calculations suggest the surface forcing efficiencies to be about −65 W m−2 τ −1 a for the high-dust season versus −81 W m−2 τ −1 a for the low-dust season. These observations indicate that the aerosol character within a region can be readily modified, even immediately adjacent to a powerful source region such as the Sahara. This study provides important observational constraints for models of dust radiative forcing.

Full access
Tim Li
,
Timothy F. Hogan
, and
C-P. Chang

Abstract

The relative roles of clouds, surface evaporation, and ocean heat transport in limiting maximum sea surface temperatures (SSTs) in the western Pacific warm pool are investigated by means of simple and intermediate coupled ocean–atmosphere models. The authors first take an analytical approach by constructing a conceptual two-box model that contains dynamic coupling among the Walker circulation, SST, and ocean thermocline and thermodynamic coupling, which includes shortwave and longwave cloud forcing and latent and sensible heat fluxes at the ocean surface. In a realistic parameter regime, the three mechanisms mentioned above are all essential in limiting the SSTs within the observed range. The lack of any one mechanism would lead to an equilibrium SST that is too high, although unstable warming due to the super greenhouse effect would not occur. The analysis of the surface heat balance from the simple box model indicates that in the western Pacific warm pool, cloud reflection has a dominant effect, followed by evaporation and ocean dynamics.

The simple model results are further evaluated numerically by using an intermediate coupled ocean–atmosphere model. With the forcing of the annual-mean solar radiation, this model is capable of simulating a realistic annual mean climate in the tropical Pacific. The authors then introduce an initial SST perturbation and examine how the perturbation evolves with time in the presence of clouds, surface evaporation, and ocean dynamic processes. Four experiments have been designed. In the first three experiments, each of the three processes is studied separately; in the last experiment, they are combined. The intermediate model results indicate that in the western Pacific warm pool, the largest negative feedback comes from the cloud shortwave radiation forcing, followed by the surface evaporation and ocean heat transport. The sensitivity of the model to various initial SST perturbation patterns is also investigated.

Full access
X. Zou
,
X. Wang
,
F. Weng
, and
G. Li

Abstract

After the successful launches of the first two polar-orbiting satellites in a new Fengyun-3 (FY-3) series, FY-3A/B, into a morning- and afternoon-configured orbit in May 2008 and November 2010, respectively, China will launch its next three polar-orbiting satellites before 2020. The Microwave Temperature Sounder (MWTS) on the FY-3A/B satellites has four channels that have the same channel frequency as channels 3, 5, 7, and 9 of Advanced Microwave Sounding Unit-A (AMSU-A). Thus, the quality of the brightness temperature measurements from the FY-3A MWTS can be assessed using the AMSU-A brightness temperature observations from the NOAA-18 satellite. Overall, MWTS data compare favorably with AMSU-A data in terms of its global bias to NWP simulations. The standard deviations of global MWTS brightness temperatures are slightly larger than those of AMSU-A data. The scan-angle dependence of the brightness temperature bias is found to be symmetric for MWTS channel 3 as well as AMSU-A channel 7, and asymmetric for MWTS channels 2 and 4 and AMSU-A channels 5 and 9; there is a warm (cold) bias located at the beginning (end) of a scan line for all asymmetric channels except for MWTS channel 4. A major difference between the two instruments is that the MWTS biases in channels 3 and 4 are negative in low latitudes and positive in high latitudes, while the AMSU-A biases are negative in all latitudes. A detailed analysis of the data reveals that such a difference is closely related to the difference in the temperature dependence of biases between the two instruments. The AMSU-A biases are independent of the scene temperature, but MWTS biases vary with the earth scene brightness temperature. The root cause of the bias could be a combination of several factors, including solar contamination on its calibration target, detector nonlinearity, and the center frequency drift. This study further demonstrates the utility of a well-calibrated radiometer like AMSU-A for the assessment of a new instrument with NWP fields that are used as inputs to forward radiative transfer simulations.

Full access
F. J. Robinson
,
S. C. Sherwood
, and
Y. Li

Abstract

Observations show substantial variations of the intensity of tropical and/or summertime deep convection on land that are not explained by standard measures of convective instability. One feature that distinguishes land surfaces is their heterogeneity. The possible importance of this is investigated here by calculating the response of a nonrotating atmosphere to localized, transient surface heating using both the linearized equations of motion and a cloud-resolving configuration of the Weather Research and Forecasting (WRF) numerical model with moist physics, each in 2D. Both models predict that the depth of the resulting surface heat low near storm center will be greatest for a particular horizontal scale of heating. The linear model reveals that this is a resonant scale determined by the product of the environmental buoyancy frequency, characteristic heating time scale, and thickness of the thermal boundary layer, and the resonance occurs when the aspect ratio of the applied heating matches the ratio of vertical and horizontal wavenumbers demanded by the dispersion relation for buoyancy (gravity) waves. For realistic conditions, the resonant horizontal scale is roughly 50 km. The numerical model indicates that other measures of convective intensity, such as updraft speed and storm height, are largely controlled by the depth of the heat low, despite the presence of conditional instability and the vigorous growth of moist convective plumes. Predictions here agree with reported observations of storm severity over islands of different sizes. These findings may help explain why observed geographical variations in storm intensity defy parcel theory and indicate that phenomena often attributed to parcel entrainment may instead be due largely to storm-scale dynamical constraints.

Full access
Gerald F. Herman
,
Man-Li C. Wu
, and
Winthrop T. Johnson

Abstract

The effect of global cloudiness on the solar and infrared components of the earth's radiation balance is studied in general circulation model experiments. A wintertime simulation is conducted in which the cloud radiative transfer calculations use realistic cloud optical properties and are fully interactive with model-generated cloudiness. This simulation is compared to others in which the clouds are alternatively non-interactive with respect to the solar or thermal radiation calculations. Other cloud processes (formation, latent heat release, precipitation, vertical mixing) were accurately simulated in these experiments.

We conclude that on a global basis clouds increase the global radiation balance by 40 W m−2 by absorbing longwave radiation, but decrease it by 56 W m−2 by reflecting solar radiation to space. The net cloud effect is therefore a reduction of the radiation balance by 16 W m−2, and is dominated by the cloud albedo effect.

Changes in cloud frequency and distribution and in atmospheric and land temperatures are also reported for the control and for the non-interactive simulations. In general, removal of the clouds’ infrared absorption cools the atmosphere and causes additional cloudiness to occur, while removal of the clouds’ solar radiative properties warms the atmosphere and causes fewer clouds to form. It is suggested that layered clouds and convective clouds over water enter the climate system as positive feedback components, while convective clouds over land enter as negative components.

Full access
Xiaoliang Song
,
Guang J. Zhang
, and
J.-L. F. Li

Abstract

A physically based two-moment microphysics parameterization scheme for convective clouds is implemented in the NCAR Community Atmosphere Model version 5 (CAM5) to improve the representation of convective clouds and their interaction with large-scale clouds and aerosols. The explicit treatment of mass mixing ratio and number concentration of cloud and precipitation particles enables the scheme to account for the impact of aerosols on convection. The scheme is linked to aerosols through cloud droplet activation and ice nucleation processes and to stratiform cloud parameterization through convective detrainment of cloud liquid/ice water content (LWC/IWC) and droplet/crystal number concentration (DNC/CNC). A 5-yr simulation with the new convective microphysics scheme shows that both cloud LWC/IWC and DNC/CNC are in good agreement with observations, indicating the scheme describes microphysical processes in convection well. Moreover, the microphysics scheme is able to represent the aerosol effects on convective clouds such as the suppression of warm rain formation and enhancement of freezing when aerosol loading is increased. With more realistic simulations of convective cloud microphysical properties and their detrainment, the mid- and low-level cloud fraction is increased significantly over the ITCZ–southern Pacific convergence zone (SPCZ) and subtropical oceans, making it much closer to the observations. Correspondingly, the serious negative bias in cloud liquid water path over subtropical oceans observed in the standard CAM5 is reduced markedly. The large-scale precipitation is increased and precipitation distribution is improved as well. The long-standing precipitation bias in the western Pacific is significantly alleviated because of microphysics–thermodynamics feedbacks.

Full access
Liqiang Sun
,
Huilan Li
,
M. Neil Ward
, and
David F. Moncunill

Abstract

Understanding of climate influence on crop yields can help in the design of policies to reduce climate-related vulnerability in many parts of the world, including the target of this case study—the state of Ceará, Brazil. The study has examined the relationships between climate variations and corn yields and, in addition, has estimated the potential predictability of corn yields in Ceará drawing on the now well-established seasonal predictability of the region’s climate based on prevailing patterns of sea surface temperature (SST), especially in the tropical Atlantic and tropical Pacific Oceans. The relationships between corn yields and climate variables have been explored using observed data for the period of 1952–2001. A linear regression–based corn-yield model was evaluated by comparing the model-simulated yields with the observations using three goodness-of-fit measures: the coefficient of determination, the index of agreement, and the mean absolute error. A comparative performance analysis was carried out on several climate variables to determine the most appropriate climate index for simulating corn yields in Ceará. A weather index was defined to measure the severity of drought and flooding conditions in the growing season for corn. The analysis indicated that the weather index is the best climate parameter for simulating corn yields in Ceará. The observed weather index can explain 56.8% of the variance of the observed corn yields. High potential predictability of the weather index was revealed by the evaluation of an ensemble of 10 runs with the NCEP Regional Spectral Model nested into the ECHAM4.5 atmospheric general circulation model, driven with observed SSTs in each season for the period of 1971–2000. Whereas these runs are based on the actual observed SST pattern in each season, other studies have shown that persistence of SST over several months is sufficient for a true predictive capability. The aim here was to show that the SST-forced component of climate variation does translate into the weather features that are important for crop yields. Indeed, the results demonstrate the striking extent to which the year-to-year changes in SST force local climate characteristics that can specify the year-to-year variations in corn yields. The variance of corn yield explained by the SST-driven model was 49.5%.

Full access
Qiang Li
,
David M. Farmer
,
Timothy F. Duda
, and
Steve Ramp

Abstract

The performance of pressure sensor–equipped inverted echo sounders for monitoring nonlinear internal waves is examined. The inverted echo sounder measures the round-trip acoustic travel time from the sea floor to the sea surface and thus acquires vertically integrated information on the thermal structure, from which the first baroclinic mode of thermocline motion may be inferred. This application of the technology differs from previous uses in that the wave period (∼30 min) is short, requiring a more rapid transmission rate and a different approach to the analysis. Sources of error affecting instrument performance include tidal effects, barotropic adjustment to internal waves, ambient acoustic noise, and sea surface roughness. The latter two effects are explored with a simulation that includes surface wave reconstruction, acoustic scattering based on the Kirchhoff approximation, wind-generated noise, sound propagation, and the instrument’s signal processing circuitry. Bias is introduced as a function of wind speed, but the simulation provides a basis for bias correction.

The assumption that the waves do not significantly affect the mean stratification allows for a focus on the dynamic response. Model calculations are compared with observations in the South China Sea by using nearby temperature measurements to provide a test of instrument performance. After applying corrections for ambient noise and surface roughness effects, the inverted echo sounder exhibits an RMS variability of approximately 4 m in the estimated depth of the eigenfunction maximum in the wind speed range 0 ≤ U 10 ≤ 10 m s−1. This uncertainty may be compared with isopycnal excursions for nonlinear internal waves of 100 m, showing that the observational approach is effective for measurements of nonlinear internal waves in this environment.

Full access
K. Goubanova
,
L. Li
,
P. Yiou
, and
F. Codron

Abstract

The idea of using large-scale information to predict local climate variability is widely exploited in climate change impact studies as an alternative to computationally expensive high-resolution models. This approach implies the hypothesis that the statistical relationship between large-scale climate states and local variables defined for the present-day climate remains valid in the altered climate. In this paper, the concept of weather regimes is used to deduce a relationship between large-scale circulation and European winter temperature. The change in temperature with increased greenhouse gases is, however, not homogeneous among the individual regimes. As a result, the impact of the weather regimes on local temperature changes varies in the future, limiting its usefulness for refining temperature changes to the small scale.

Full access